Spiking Neural Networks Using Backpropagation

Tehreem Syed, Vijay Kakani, X. Cui, Hakil Kim
{"title":"Spiking Neural Networks Using Backpropagation","authors":"Tehreem Syed, Vijay Kakani, X. Cui, Hakil Kim","doi":"10.1109/TENSYMP52854.2021.9550994","DOIUrl":null,"url":null,"abstract":"Brain-inspired Spiking Neural Networks (SNNs) occur with well-known neuromorphic hardware that delivers extra energy compared to conventional artificial neural networks (ANNs). Nevertheless, exploiting the same network layers as conventional ANNs to persevere a task appears unsuitable. Previous works employ similar architectures as Artificial Neural Networks and transform them into Spiking Neural Networks to attain the most exemplary performance as conventional ANNs. Nevertheless, this conversion technique needs greater timesteps for training spiking neural networks (SNNs). In this work, rather than using the ANN to SNN conversion method, we exploit the SNNs training directly using spike-based backpropagation. Since utilizing SNNs with the spike-based backpropagation requires fewer timesteps compared to ANN to SNN transformation approach. This work evaluates the classification performance on public and private (MNIST, Fashion MNIST, and KITTI) datasets.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Brain-inspired Spiking Neural Networks (SNNs) occur with well-known neuromorphic hardware that delivers extra energy compared to conventional artificial neural networks (ANNs). Nevertheless, exploiting the same network layers as conventional ANNs to persevere a task appears unsuitable. Previous works employ similar architectures as Artificial Neural Networks and transform them into Spiking Neural Networks to attain the most exemplary performance as conventional ANNs. Nevertheless, this conversion technique needs greater timesteps for training spiking neural networks (SNNs). In this work, rather than using the ANN to SNN conversion method, we exploit the SNNs training directly using spike-based backpropagation. Since utilizing SNNs with the spike-based backpropagation requires fewer timesteps compared to ANN to SNN transformation approach. This work evaluates the classification performance on public and private (MNIST, Fashion MNIST, and KITTI) datasets.
使用反向传播的脉冲神经网络
与传统的人工神经网络(ann)相比,大脑激发的脉冲神经网络(SNNs)采用了众所周知的神经形态硬件,可以提供额外的能量。然而,利用与传统人工神经网络相同的网络层来完成任务似乎并不合适。以前的工作采用与人工神经网络类似的架构,并将其转换为峰值神经网络,以获得与传统人工神经网络最典型的性能。然而,这种转换技术需要更长的时间步来训练尖峰神经网络(snn)。在这项工作中,我们不是使用ANN到SNN的转换方法,而是直接使用基于峰值的反向传播来利用SNN训练。由于利用SNN与基于峰值的反向传播相比,ANN到SNN的转换方法需要更少的时间步长。这项工作评估了公共和私人(MNIST, Fashion MNIST和KITTI)数据集上的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信