Toshiki Ito, Yuto Ito, I. Kawata, Ken-ichi Ueyama, Kouhei Nagane, Weijun Liu, T. Stachowiak, Wei Zhang, Teresa Estrada
{"title":"Nanoimprint Lithography with CO2 Ambient","authors":"Toshiki Ito, Yuto Ito, I. Kawata, Ken-ichi Ueyama, Kouhei Nagane, Weijun Liu, T. Stachowiak, Wei Zhang, Teresa Estrada","doi":"10.1109/ISSM55802.2022.10027095","DOIUrl":null,"url":null,"abstract":"In Jet and Flash Imprint Lithography (JFIL), ambient gas is trapped between the resist, the substrate and the mold. The volume of the trapped ambient gas is estimated about 9.7 ~ 21.5% of the resist volume. It takes time for the bubbles to disappear in the closed space. In case that carbon dioxide ambient is applied in JFIL, it was theoretically and experimentally demonstrated that the trapped carbon dioxide gas dissolved rapidly into organic liquid or organic solid layer in imprint stack. The trapped carbon dioxide gas bubble disappeared more rapidly than that of helium gas, which resulted in higher throughput and fewer defect number.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10027095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Jet and Flash Imprint Lithography (JFIL), ambient gas is trapped between the resist, the substrate and the mold. The volume of the trapped ambient gas is estimated about 9.7 ~ 21.5% of the resist volume. It takes time for the bubbles to disappear in the closed space. In case that carbon dioxide ambient is applied in JFIL, it was theoretically and experimentally demonstrated that the trapped carbon dioxide gas dissolved rapidly into organic liquid or organic solid layer in imprint stack. The trapped carbon dioxide gas bubble disappeared more rapidly than that of helium gas, which resulted in higher throughput and fewer defect number.