Going Small: Using the Insect Brain as a Model System for Edge Processing Applications

A. Yanguas-Gil
{"title":"Going Small: Using the Insect Brain as a Model System for Edge Processing Applications","authors":"A. Yanguas-Gil","doi":"10.1145/3194554.3194610","DOIUrl":null,"url":null,"abstract":"In this work I explore bio-inspired architectures for adaptive and smart sensing incorporating two key aspects present on the insect brain that are not found in more traditional neural network approaches: modulated, hierarchical processing and modulated learning. Our architecture incorporates two central ideas: 1) a state-dependent processing of inputs that can be triggered internally or externally, and 2) state-dependent online learning capabilities, in this specific case allowing the system to change the valence associated to different types of input. These ideas are explored through a hybrid design in which information is processed through a spiking neural network, while a recurrent non-spiking component provides the modulatory feedback to the system. The proposed approach exemplifies how neuromorphic computing approaches naturally integrate sensing and processing within a single functional unit. The proposed architecture can be implemented using conventional VLSI processing, though the integration of novel materials can help simplify its implementation.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work I explore bio-inspired architectures for adaptive and smart sensing incorporating two key aspects present on the insect brain that are not found in more traditional neural network approaches: modulated, hierarchical processing and modulated learning. Our architecture incorporates two central ideas: 1) a state-dependent processing of inputs that can be triggered internally or externally, and 2) state-dependent online learning capabilities, in this specific case allowing the system to change the valence associated to different types of input. These ideas are explored through a hybrid design in which information is processed through a spiking neural network, while a recurrent non-spiking component provides the modulatory feedback to the system. The proposed approach exemplifies how neuromorphic computing approaches naturally integrate sensing and processing within a single functional unit. The proposed architecture can be implemented using conventional VLSI processing, though the integration of novel materials can help simplify its implementation.
走向小:使用昆虫大脑作为边缘处理应用的模型系统
在这项工作中,我探索了自适应和智能传感的生物启发架构,结合了昆虫大脑中存在的两个关键方面,这些方面在更传统的神经网络方法中没有发现:调制,分层处理和调制学习。我们的架构包含两个中心思想:1)可以在内部或外部触发的输入的状态依赖处理,以及2)状态依赖的在线学习能力,在这个特定的情况下,允许系统改变与不同类型的输入相关的价。这些想法是通过一种混合设计来探索的,其中信息通过一个尖峰神经网络处理,而一个循环的非尖峰组件为系统提供调制反馈。所提出的方法举例说明了神经形态计算方法如何自然地将传感和处理集成到单个功能单元中。所提出的架构可以使用传统的超大规模集成电路(VLSI)工艺来实现,但新材料的集成可以帮助简化其实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信