Dynamic Unravelling

Joel P. Flynn
{"title":"Dynamic Unravelling","authors":"Joel P. Flynn","doi":"10.2139/ssrn.3496074","DOIUrl":null,"url":null,"abstract":"Rapid declines in the prices of financial securities on low trading volume -- low volume crashes -- are ubiquitous. This paper proposes a dynamic model with informational asymmetries and costly short-selling to explain this phenomenon. Owing to short-selling constraints, no-trade events are bad news. No-trade therefore lowers prices, worsens adverse selection, increases bid-ask spreads and causes liquidity traders to leave the market, making no-trade more likely. This generates endogenous auto-correlation in no-trade events -- dynamic unravelling -- and causes low volume crashes. Short-selling prohibitions harm price discovery and make crashes more likely. Liquidity interventions aid price discovery and avert crashes.","PeriodicalId":352857,"journal":{"name":"DecisionSciRN: Other Investment Decision-Making (Sub-Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Other Investment Decision-Making (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3496074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid declines in the prices of financial securities on low trading volume -- low volume crashes -- are ubiquitous. This paper proposes a dynamic model with informational asymmetries and costly short-selling to explain this phenomenon. Owing to short-selling constraints, no-trade events are bad news. No-trade therefore lowers prices, worsens adverse selection, increases bid-ask spreads and causes liquidity traders to leave the market, making no-trade more likely. This generates endogenous auto-correlation in no-trade events -- dynamic unravelling -- and causes low volume crashes. Short-selling prohibitions harm price discovery and make crashes more likely. Liquidity interventions aid price discovery and avert crashes.
动态解体
金融证券价格在低交易量时迅速下跌——即低交易量崩盘——是普遍现象。本文提出了一个包含信息不对称和昂贵卖空的动态模型来解释这一现象。由于卖空限制,无交易事件是坏消息。因此,无交易降低了价格,加剧了逆向选择,增加了买卖价差,并导致流动性交易者离开市场,使无交易更有可能发生。这在无交易事件中产生了内生的自相关性——动态解除——并导致小批量崩溃。卖空禁令损害了价格发现,加大了崩盘的可能性。流动性干预有助于价格发现,避免崩盘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信