Genetic reasoning for finger sign identification based on forearm electromyogram

T. Tsujimura, Takahiro Hashimoto, K. Izumi
{"title":"Genetic reasoning for finger sign identification based on forearm electromyogram","authors":"T. Tsujimura, Takahiro Hashimoto, K. Izumi","doi":"10.1109/AE.2014.7011724","DOIUrl":null,"url":null,"abstract":"This paper proposes a meta-heuristic data-clustering application to identify finger signs only by measuring surface electromyogram (EMG) of a forearm. It classifies EMG signal patterns peculiar to finger signs. Genetic programming learns intensity characteristics of EMG signals, and creates classification algorithm. Three typical finger signs are evaluated in terms of generated EMG. Experiments are conducted to reveal the successful identification of finger signs in real time.","PeriodicalId":149779,"journal":{"name":"2014 International Conference on Applied Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Applied Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE.2014.7011724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a meta-heuristic data-clustering application to identify finger signs only by measuring surface electromyogram (EMG) of a forearm. It classifies EMG signal patterns peculiar to finger signs. Genetic programming learns intensity characteristics of EMG signals, and creates classification algorithm. Three typical finger signs are evaluated in terms of generated EMG. Experiments are conducted to reveal the successful identification of finger signs in real time.
基于前臂肌电图的手指符号识别遗传推理
本文提出了一种元启发式数据聚类应用,仅通过测量前臂表面肌电图(EMG)来识别手指符号。它对手指特有的肌电图信号模式进行分类。遗传规划学习肌电信号的强度特征,建立分类算法。根据生成的肌电图评估三个典型的手指手势。通过实验验证了该方法能够实时有效地识别手指的手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信