Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing

A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. de Franceschi, C. Enz
{"title":"Design-oriented modeling of 28 nm FDSOI CMOS technology down to 4.2 K for quantum computing","authors":"A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. de Franceschi, C. Enz","doi":"10.1109/ULIS.2018.8354742","DOIUrl":null,"url":null,"abstract":"In this paper a commercial 28 nm FDSOI CMOS technology is characterized and modeled from room temperature down to 4.2 K. Here we explain the influence of incomplete ionization and interface traps on this technology starting from the fundamental device-physics. We then illustrate how these phenomena can be accounted for in circuit device-models. We find that the design-oriented simplified EKV model can accurately predict the impact of the temperature reduction on the transfer characteristics, back-gate sensitivity, and transconductance efficiency. The presented results aim at extending industry-standard compact models to cryogenic temperatures for the design of cryo-CMOS circuits implemented in a 28 nm FDSOI technology.","PeriodicalId":383788,"journal":{"name":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULIS.2018.8354742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper a commercial 28 nm FDSOI CMOS technology is characterized and modeled from room temperature down to 4.2 K. Here we explain the influence of incomplete ionization and interface traps on this technology starting from the fundamental device-physics. We then illustrate how these phenomena can be accounted for in circuit device-models. We find that the design-oriented simplified EKV model can accurately predict the impact of the temperature reduction on the transfer characteristics, back-gate sensitivity, and transconductance efficiency. The presented results aim at extending industry-standard compact models to cryogenic temperatures for the design of cryo-CMOS circuits implemented in a 28 nm FDSOI technology.
面向设计建模的28纳米FDSOI CMOS技术,低至4.2 K,适用于量子计算
本文对商用28纳米FDSOI CMOS技术进行了表征,并在室温至4.2 K范围内进行了建模。本文从器件物理学的基本原理出发,解释了不完全电离和界面阱对该技术的影响。然后我们说明如何在电路器件模型中解释这些现象。我们发现,以设计为导向的简化EKV模型可以准确预测温度降低对传输特性、后门灵敏度和跨导效率的影响。提出的结果旨在将工业标准紧凑型模型扩展到低温,以设计在28 nm FDSOI技术中实现的低温cmos电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信