Geometric-Based Segmentation of Polarization-Encoded Images

Samia Ainouz, O. Morel, F. Mériaudeau
{"title":"Geometric-Based Segmentation of Polarization-Encoded Images","authors":"Samia Ainouz, O. Morel, F. Mériaudeau","doi":"10.1109/SITIS.2008.13","DOIUrl":null,"url":null,"abstract":"In the framework of Mueller parameters imaging, polarization-encoded images have sixteen channels. The relevancy of such multidimensional structure comes from the set of physical information they carry about the local nature of the target. The admissibility constraints imposed on these images make awkward their analysis and processing and prevent to explore their richness. This induces the need for a proper tool that allows the analysis and processing of polarization-encoded images. In this paper we address a new method to segment Mueller imaging and use the geometric algebra to represent the polarization formalism and segment polarization-encoded images while respecting their physical meaning. The segmentation task is based on the fuzzy K-mean algorithm.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the framework of Mueller parameters imaging, polarization-encoded images have sixteen channels. The relevancy of such multidimensional structure comes from the set of physical information they carry about the local nature of the target. The admissibility constraints imposed on these images make awkward their analysis and processing and prevent to explore their richness. This induces the need for a proper tool that allows the analysis and processing of polarization-encoded images. In this paper we address a new method to segment Mueller imaging and use the geometric algebra to represent the polarization formalism and segment polarization-encoded images while respecting their physical meaning. The segmentation task is based on the fuzzy K-mean algorithm.
偏振编码图像的几何分割
在穆勒参数成像框架下,偏振编码图像有16个通道。这种多维结构的相关性来自于它们所携带的关于目标局部性质的物理信息集。对这些图像的可接受性限制使其难以分析和处理,阻碍了对其丰富性的探索。这导致需要一个适当的工具,允许分析和处理偏振编码的图像。本文提出了一种新的穆勒成像分割方法,利用几何代数来表示极化形式,并在尊重极化编码图像的物理意义的情况下对其进行分割。分割任务是基于模糊k均值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信