Mohammad Amin Jarrahi, Farzad Roozitalab, M. Arefi, M. Javadi, J. Catalão
{"title":"DC Microgrid Energy Management System Containing Photovoltaic Sources Considering Supercapacitor and Battery Storages","authors":"Mohammad Amin Jarrahi, Farzad Roozitalab, M. Arefi, M. Javadi, J. Catalão","doi":"10.1109/SEST48500.2020.9203135","DOIUrl":null,"url":null,"abstract":"The tendency to use renewable energies in DC microgrids (MGs) has been increased in the past decades. Due to the unpredictable behavior of renewable resources, it is vital to utilize energy storage resources in the MG structure. The generation sources and storages in DC MGs should be chosen in order to meet the maximum demand in both grid-connected and islanded mode. Also, penetration of power electronic based devices is essential to connect these resources to the network. The control of these devices are another challenge in this regard. So, a proper configuration along with an efficient control approach is needed for development of DC MGs. In this paper, a new structure for DC MG is presented which includes solar photovoltaic (PV) as generation sources and supercapacitor and battery as storages. Furthermore, an innovative control method based on voltage variations is introduced for the proposed structure. It is shown that simultaneous usage of battery and supercapacitor improves the performance of the MG in handling the abrupt load changes in the both grid-connected and islanded mode operations. To evaluate the performance of the proposed structure and control algorithm, different conditions are simulated in MATLAB/Simulink software and the results are presented. The results confirm a high degree of performance for proposed structure and control method.","PeriodicalId":302157,"journal":{"name":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST48500.2020.9203135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The tendency to use renewable energies in DC microgrids (MGs) has been increased in the past decades. Due to the unpredictable behavior of renewable resources, it is vital to utilize energy storage resources in the MG structure. The generation sources and storages in DC MGs should be chosen in order to meet the maximum demand in both grid-connected and islanded mode. Also, penetration of power electronic based devices is essential to connect these resources to the network. The control of these devices are another challenge in this regard. So, a proper configuration along with an efficient control approach is needed for development of DC MGs. In this paper, a new structure for DC MG is presented which includes solar photovoltaic (PV) as generation sources and supercapacitor and battery as storages. Furthermore, an innovative control method based on voltage variations is introduced for the proposed structure. It is shown that simultaneous usage of battery and supercapacitor improves the performance of the MG in handling the abrupt load changes in the both grid-connected and islanded mode operations. To evaluate the performance of the proposed structure and control algorithm, different conditions are simulated in MATLAB/Simulink software and the results are presented. The results confirm a high degree of performance for proposed structure and control method.