Research on the Application of K-Means Clustering Algorithm in Student Achievement

Dianwei Chi
{"title":"Research on the Application of K-Means Clustering Algorithm in Student Achievement","authors":"Dianwei Chi","doi":"10.1109/ICCECE51280.2021.9342164","DOIUrl":null,"url":null,"abstract":"This paper uses the K-Means algorithm in data mining to perform cluster analysis based on the final grade data of students majoring in software and information services in a certain university to effectively divide the sample data set. Through the analysis of the cluster analysis results, the characteristics of the distribution of student performance in each cluster category are refined, which provides a reference for teachers in project grouping and personalized teaching in the “project-driven” mode of teaching. At the same time, according to the visual analysis of the clustering effect in different clustering categories based on the performance of a single subject, the importance of courses can be predicted. Important courses can appropriately increase teachers or class hours. This provides scientific basis for better implementation of teaching reforms and revision of talent training programs.","PeriodicalId":229425,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE51280.2021.9342164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper uses the K-Means algorithm in data mining to perform cluster analysis based on the final grade data of students majoring in software and information services in a certain university to effectively divide the sample data set. Through the analysis of the cluster analysis results, the characteristics of the distribution of student performance in each cluster category are refined, which provides a reference for teachers in project grouping and personalized teaching in the “project-driven” mode of teaching. At the same time, according to the visual analysis of the clustering effect in different clustering categories based on the performance of a single subject, the importance of courses can be predicted. Important courses can appropriately increase teachers or class hours. This provides scientific basis for better implementation of teaching reforms and revision of talent training programs.
k -均值聚类算法在学生成绩中的应用研究
本文利用数据挖掘中的K-Means算法,对某高校软件与信息服务专业学生的期末成绩数据进行聚类分析,有效划分样本数据集。通过对聚类分析结果的分析,提炼出学生成绩在各聚类类别中的分布特征,为教师在“项目驱动”教学模式下进行项目分组和个性化教学提供参考。同时,根据单个学科的成绩对不同聚类类别的聚类效果进行可视化分析,预测课程的重要性。重要课程可适当增加教师或课时。这为更好地实施教学改革和修订人才培养方案提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信