DBSCALE: An efficient density-based clustering algorithm for data mining in large databases

Cheng-Fa Tsai, Chun-Yi Sung
{"title":"DBSCALE: An efficient density-based clustering algorithm for data mining in large databases","authors":"Cheng-Fa Tsai, Chun-Yi Sung","doi":"10.1109/PACCS.2010.5627040","DOIUrl":null,"url":null,"abstract":"This work presents a novel clustering algorithm that incorporates neighbor searching and expansion seed selection into a density-based clustering algorithm. Data Points that have been clustered need not be input again when searching for neighborhood data points, and the algorithm redefines eight Marked Boundary Objects to add expansion seeds according to far centrifugal force, which increases coverage. Experimental results indicate that the proposed DBSCALE has a lower execution time cost than DBSCAN, mBSCAN and KIDBSCAN clustering algorithms. DBSCALE has a maximum deviation in clustering correctness rate of 0.29%, and a maximum deviation in noise data clustering rate of 0.14%.","PeriodicalId":431294,"journal":{"name":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","volume":"37 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACCS.2010.5627040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This work presents a novel clustering algorithm that incorporates neighbor searching and expansion seed selection into a density-based clustering algorithm. Data Points that have been clustered need not be input again when searching for neighborhood data points, and the algorithm redefines eight Marked Boundary Objects to add expansion seeds according to far centrifugal force, which increases coverage. Experimental results indicate that the proposed DBSCALE has a lower execution time cost than DBSCAN, mBSCAN and KIDBSCAN clustering algorithms. DBSCALE has a maximum deviation in clustering correctness rate of 0.29%, and a maximum deviation in noise data clustering rate of 0.14%.
DBSCALE:用于大型数据库中数据挖掘的高效的基于密度的聚类算法
本文提出了一种新的聚类算法,将邻居搜索和扩展种子选择融合到基于密度的聚类算法中。在搜索邻域数据点时,不需要再次输入已经聚类的数据点,算法根据远离心力重新定义8个标记边界对象添加扩展种子,提高了覆盖范围。实验结果表明,与DBSCAN、mBSCAN和KIDBSCAN聚类算法相比,DBSCALE算法具有更低的执行时间开销。DBSCALE聚类正确率的最大偏差为0.29%,噪声数据聚类率的最大偏差为0.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信