Multi-class Traffic Sign Recognition System Using One-Stage Detector YOLOv5s

Sachin Dhyani, Vijay Kumar
{"title":"Multi-class Traffic Sign Recognition System Using One-Stage Detector YOLOv5s","authors":"Sachin Dhyani, Vijay Kumar","doi":"10.1109/ViTECoN58111.2023.10157616","DOIUrl":null,"url":null,"abstract":"One of the crucial software elements in the upcoming generation of autonomous vehicles is image recognition. Traditional approaches to image recognition using computer vision and machine learning typically have a lengthy response time. Modern artificial neural network-based methods and designs, including the YOLOv5s algorithm, are able to tackle this issue without suffering precision losses. In this study, we demonstrate how to use the most recent YOLOv5s algorithm to identify traffic signs. We showed the reliability of the method by training the network for 4 traffic sign classes (speed limit, traffic light, crosswalks, stop,).","PeriodicalId":407488,"journal":{"name":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ViTECoN58111.2023.10157616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the crucial software elements in the upcoming generation of autonomous vehicles is image recognition. Traditional approaches to image recognition using computer vision and machine learning typically have a lengthy response time. Modern artificial neural network-based methods and designs, including the YOLOv5s algorithm, are able to tackle this issue without suffering precision losses. In this study, we demonstrate how to use the most recent YOLOv5s algorithm to identify traffic signs. We showed the reliability of the method by training the network for 4 traffic sign classes (speed limit, traffic light, crosswalks, stop,).
基于YOLOv5s一级检测器的多类交通标志识别系统
在即将到来的新一代自动驾驶汽车中,关键的软件元素之一是图像识别。使用计算机视觉和机器学习的传统图像识别方法通常具有较长的响应时间。现代基于人工神经网络的方法和设计,包括YOLOv5s算法,能够在不损失精度的情况下解决这个问题。在本研究中,我们演示了如何使用最新的YOLOv5s算法来识别交通标志。我们通过训练4类交通标志(限速、红绿灯、人行横道、停车、)的网络来证明该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信