Optimal Sequential Search

ERN: Search Pub Date : 2020-01-31 DOI:10.2139/ssrn.3530526
Michael Choi, Lones Smith
{"title":"Optimal Sequential Search","authors":"Michael Choi, Lones Smith","doi":"10.2139/ssrn.3530526","DOIUrl":null,"url":null,"abstract":"We introduce a simple new model of sequential search among finitely many options that fits many economic applications. Each payoff is the sum of a random “known factor” and a “hidden factor”, learned at cost. Weitzman (1979) solved the ex post Pandora’s box problem, given known factors. Ours is the ex ante model for estimation, unconditional on known factors, and so resolves major selection effects. <br><br>1. Search intensifies over time, as one increasingly exercises the current option, recalls a prior one, or quits. If one recalls, earlier options are recalled more often.<br><br>2. We solve a long open question in all search models: which stochastic changes lead one to search longer? Answer: more dispersed payoffs.<br><br>3. The stationary search model poorly approximates search with many options: If the known factor density lacks a thin tail (eg. exponential), the recall chance is boundedly positive with vastly many options.<br><br>4. Search lasts longer with more options. Hence, if low search frictions increase worker applicant pools of firms, vacancy duration increases.","PeriodicalId":153208,"journal":{"name":"ERN: Search","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3530526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a simple new model of sequential search among finitely many options that fits many economic applications. Each payoff is the sum of a random “known factor” and a “hidden factor”, learned at cost. Weitzman (1979) solved the ex post Pandora’s box problem, given known factors. Ours is the ex ante model for estimation, unconditional on known factors, and so resolves major selection effects.

1. Search intensifies over time, as one increasingly exercises the current option, recalls a prior one, or quits. If one recalls, earlier options are recalled more often.

2. We solve a long open question in all search models: which stochastic changes lead one to search longer? Answer: more dispersed payoffs.

3. The stationary search model poorly approximates search with many options: If the known factor density lacks a thin tail (eg. exponential), the recall chance is boundedly positive with vastly many options.

4. Search lasts longer with more options. Hence, if low search frictions increase worker applicant pools of firms, vacancy duration increases.
最优顺序搜索
我们引入了一个简单的新模型,在有限多个选项中进行顺序搜索,该模型适用于许多经济应用。每个收益都是一个随机的“已知因素”和一个“隐藏因素”的总和,这些因素是通过成本获得的。Weitzman(1979)在给定已知因素的情况下解决了后潘多拉盒子问题。我们的模型是先验估计模型,对已知因素是无条件的,因此解决了主要的选择效应。1. 搜索会随着时间的推移而加强,因为人们会越来越多地行使当前的选择,回忆以前的选择,或者退出。如果一个人回忆,他会更频繁地回忆起之前的选项。我们解决了所有搜索模型中的一个长期开放问题:哪些随机变化导致搜索时间更长?答案是:更分散的收益。平稳搜索模型很差地逼近了具有许多选项的搜索:如果已知因子密度缺乏细尾(例如;指数),回忆的机会是有限的正与大量的选择。搜索持续时间更长,选项更多。因此,如果低搜索摩擦增加了公司的工人申请人数量,空缺持续时间就会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信