S-parameter Modeling and Optimization using Deep Gaussian Processes

F. Garbuglia, D. Spina, D. Deschrijver, I. Couckuyt, T. Dhaene
{"title":"S-parameter Modeling and Optimization using Deep Gaussian Processes","authors":"F. Garbuglia, D. Spina, D. Deschrijver, I. Couckuyt, T. Dhaene","doi":"10.23919/mikon54314.2022.9924624","DOIUrl":null,"url":null,"abstract":"In this work, a new methodology based on deep Gaussian processes (DGP) is proposed for the modeling and optimization of the S-parameter response of a microwave device. The DGP is used as a surrogate model to directly predict the magnitude (or phase) of the S-parameter as a function over the frequency and over the design parameters of the device. Subsequently an objective probability distribution is retrieved and maximized in a Bayesian optimization (BO) scheme. The new strategy overcomes the limitation of the standard Bayesian optimization that employs an objective function model: simple objective functions are easy to model but may lead to sub-optimal responses, while complicated objective functions may require more powerful and less efficient models. An adequate microwave example demonstrates the increased optimization accuracy of the proposed approach, comparing to standard BO.","PeriodicalId":177285,"journal":{"name":"2022 24th International Microwave and Radar Conference (MIKON)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/mikon54314.2022.9924624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a new methodology based on deep Gaussian processes (DGP) is proposed for the modeling and optimization of the S-parameter response of a microwave device. The DGP is used as a surrogate model to directly predict the magnitude (or phase) of the S-parameter as a function over the frequency and over the design parameters of the device. Subsequently an objective probability distribution is retrieved and maximized in a Bayesian optimization (BO) scheme. The new strategy overcomes the limitation of the standard Bayesian optimization that employs an objective function model: simple objective functions are easy to model but may lead to sub-optimal responses, while complicated objective functions may require more powerful and less efficient models. An adequate microwave example demonstrates the increased optimization accuracy of the proposed approach, comparing to standard BO.
基于深度高斯过程的s参数建模与优化
本文提出了一种基于深度高斯过程(DGP)的微波器件s参数响应建模和优化方法。DGP用作替代模型,直接预测s参数的幅度(或相位)作为频率和器件设计参数的函数。然后用贝叶斯优化(BO)方法获取客观概率分布并使其最大化。新策略克服了采用目标函数模型的标准贝叶斯优化的局限性:简单的目标函数易于建模,但可能导致次优响应,而复杂的目标函数可能需要更强大的模型,但效率较低。一个适当的微波实例表明,与标准BO相比,所提方法的优化精度有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信