{"title":"Highly improved SNR differential sensing method using parallel operation signaling for touch screen application","authors":"Sanghyun Heo, Hyunggun Ma, Jae Joon Kim, F. Bien","doi":"10.1109/ASSCC.2014.7008884","DOIUrl":null,"url":null,"abstract":"In this paper, a continuous-time differential type multi-signal parallel driving architecture touch screen sensing circuit for projective capacitive type panel is presented. In order to further enhance the Signal-to-Noise Ratio (SNR), a new transmitter (TX) architecture is proposed with parallel signal processing algorithm. In this work, charge amplifiers with built-in band-pass filter are designed that filter out low frequency noise and common-mode noise simultaneously. Conventional approaches in continuous-time operation with band-pass filter suffer from a synchronization problem in the case of multi-signal parallel driving. In this work, a built-in delay calibration circuit is proposed that can align signal timing for TX signal and adjacent receiver (RX) sensing line. This proposed architecture enables multi-signal parallel driving in continuous-time operation for projective capacitive sensing circuits. The proposed work supports 16 × 8 mutual capacitive touch screen panel (TSP). TSP load is 12.5 kΩ and 40 pF with frame rate of 200 Hz and 58 dB SNR. Power dissipation is 46 mW.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a continuous-time differential type multi-signal parallel driving architecture touch screen sensing circuit for projective capacitive type panel is presented. In order to further enhance the Signal-to-Noise Ratio (SNR), a new transmitter (TX) architecture is proposed with parallel signal processing algorithm. In this work, charge amplifiers with built-in band-pass filter are designed that filter out low frequency noise and common-mode noise simultaneously. Conventional approaches in continuous-time operation with band-pass filter suffer from a synchronization problem in the case of multi-signal parallel driving. In this work, a built-in delay calibration circuit is proposed that can align signal timing for TX signal and adjacent receiver (RX) sensing line. This proposed architecture enables multi-signal parallel driving in continuous-time operation for projective capacitive sensing circuits. The proposed work supports 16 × 8 mutual capacitive touch screen panel (TSP). TSP load is 12.5 kΩ and 40 pF with frame rate of 200 Hz and 58 dB SNR. Power dissipation is 46 mW.