A Quantity Evaluation and Reconfiguration Mechanism for Signal- and Power-Interconnections in 3D-Stacking System

Ching-Hwa Cheng
{"title":"A Quantity Evaluation and Reconfiguration Mechanism for Signal- and Power-Interconnections in 3D-Stacking System","authors":"Ching-Hwa Cheng","doi":"10.1109/ASP-DAC47756.2020.9045169","DOIUrl":null,"url":null,"abstract":"Due to the high integration required for system application, the three-dimensional chip may resolve this requirement. The three-dimensional vertically stacking (3D-stacking) systems have been proposed to satisfy these requirements. However, the 3D-stacking system contains several design risks from its long layer interconnections. For a 3D-stacking system, it is difficult to identify where the numerous power and signal-interconnection are open-, shorted-fault, or resistive-short has accrued. Therefore, solving these interconnection problems is necessary. A feasible interconnection quality-evaluation, fault-diagnosis, and connection-reconfigurable mechanism are proposed. The proposed interconnection-measurement-recovery (IMR) mechanism will make it easy to find interconnection faults and make recovery in 3D-Stacking systems. The proposed IMR can detect interconnection open, short, bridge and resistive defects with the path-reroute mechanism. Future more, the signal transmission quality can be measured. This measurement provides to monitor signal propagation in pico-second accuracy. IMR has less extra area and power consumption overhead. The feasibilities of the proposed mechanism have been justified by 2D-chip and 3D-stacking MorPack both systems.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high integration required for system application, the three-dimensional chip may resolve this requirement. The three-dimensional vertically stacking (3D-stacking) systems have been proposed to satisfy these requirements. However, the 3D-stacking system contains several design risks from its long layer interconnections. For a 3D-stacking system, it is difficult to identify where the numerous power and signal-interconnection are open-, shorted-fault, or resistive-short has accrued. Therefore, solving these interconnection problems is necessary. A feasible interconnection quality-evaluation, fault-diagnosis, and connection-reconfigurable mechanism are proposed. The proposed interconnection-measurement-recovery (IMR) mechanism will make it easy to find interconnection faults and make recovery in 3D-Stacking systems. The proposed IMR can detect interconnection open, short, bridge and resistive defects with the path-reroute mechanism. Future more, the signal transmission quality can be measured. This measurement provides to monitor signal propagation in pico-second accuracy. IMR has less extra area and power consumption overhead. The feasibilities of the proposed mechanism have been justified by 2D-chip and 3D-stacking MorPack both systems.
三维堆叠系统中信号与电源互连的数量评估与重构机制
由于系统应用对集成度要求很高,三维芯片可以解决这一要求。为了满足这些要求,提出了三维垂直堆叠(3D-stacking)系统。然而,由于其长层互连,3d堆叠系统存在一些设计风险。对于3d堆叠系统来说,很难识别大量的电源和信号互连在哪里是开路、短路-故障或电阻-短路。因此,解决这些互连问题是必要的。提出了一种可行的互连质量评估、故障诊断和连接可重构机制。所提出的互连-测量-恢复(IMR)机制可以方便地发现三维堆叠系统中的互连故障并进行恢复。利用路径重定向机制,该方法可以检测互连的开路、短路、桥接和电阻性缺陷。未来,还可以测量信号的传输质量。这种测量提供了以皮秒精度监测信号传播。IMR具有较少的额外面积和功耗开销。通过3d芯片和3d堆叠MorPack系统验证了该机制的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信