A Machine Learning based Metaheuristic Technique for Decoupling Capacitor Optimization

Heman Vaghasiya, Akash Jain, J. N. Tripathi
{"title":"A Machine Learning based Metaheuristic Technique for Decoupling Capacitor Optimization","authors":"Heman Vaghasiya, Akash Jain, J. N. Tripathi","doi":"10.1109/SPI54345.2022.9874924","DOIUrl":null,"url":null,"abstract":"Decoupling capacitors are commonly used in the design and optimization of Power Delivery Networks (PDNs) in high-speed very large scale integration systems (VLSI) to minimize the variations in the power supply and to maintain a low PDN ratio. In this paper, an efficient and fast Machine Learning (ML) based surrogate-assisted metaheuristic approach is proposed for the decoupling capacitor optimization problem to reduce the cumulative impedance of the PDN below the target impedance. The performance comparison of the proposed approach with state-of-the-art approaches is also presented.","PeriodicalId":285253,"journal":{"name":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","volume":"76 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI54345.2022.9874924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Decoupling capacitors are commonly used in the design and optimization of Power Delivery Networks (PDNs) in high-speed very large scale integration systems (VLSI) to minimize the variations in the power supply and to maintain a low PDN ratio. In this paper, an efficient and fast Machine Learning (ML) based surrogate-assisted metaheuristic approach is proposed for the decoupling capacitor optimization problem to reduce the cumulative impedance of the PDN below the target impedance. The performance comparison of the proposed approach with state-of-the-art approaches is also presented.
基于机器学习的电容解耦优化元启发式技术
去耦电容通常用于高速超大规模集成系统(VLSI)中输电网络(PDN)的设计和优化,以尽量减少电源的变化并保持较低的PDN比率。针对解耦电容优化问题,提出了一种基于机器学习(ML)的代理辅助元启发式优化方法,使PDN的累积阻抗低于目标阻抗。并将所提出的方法与最先进的方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信