Colin D. Bailie, J. Mailoa, E. Johlin, William H. Nguyen, E. Hoke, A. Akey, T. Buonassisi, M. McGehee
{"title":"Mechanically stacked and monolithically integrated perovskite/silicon tandems and the challenges for high efficiency","authors":"Colin D. Bailie, J. Mailoa, E. Johlin, William H. Nguyen, E. Hoke, A. Akey, T. Buonassisi, M. McGehee","doi":"10.1109/PVSC.2015.7355674","DOIUrl":null,"url":null,"abstract":"With the advent of high-bandgap perovskites, the opportunity now exists to make tandems with perovskites on top of silicon. We have prototyped a mechanically stacked tandem, achieving 17.9% certified efficiency using a perovskite cell with a silver nanowire mesh electrode. We have also prototyped a monolithically integrated tandem on silicon, with the two subcells electronically connected by band-to-band tunneling in the silicon. The primary challenges to propelling perovskite/silicon tandems into a high-efficiency (>25%) regime are spiro-OMeTAD parasitic absorption, perovskite crystal quality, stability of a perovskite with a 1.8 eV bandgap, perovskite environmental stability, and transparent electrode quality and stability.","PeriodicalId":427842,"journal":{"name":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2015.7355674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
With the advent of high-bandgap perovskites, the opportunity now exists to make tandems with perovskites on top of silicon. We have prototyped a mechanically stacked tandem, achieving 17.9% certified efficiency using a perovskite cell with a silver nanowire mesh electrode. We have also prototyped a monolithically integrated tandem on silicon, with the two subcells electronically connected by band-to-band tunneling in the silicon. The primary challenges to propelling perovskite/silicon tandems into a high-efficiency (>25%) regime are spiro-OMeTAD parasitic absorption, perovskite crystal quality, stability of a perovskite with a 1.8 eV bandgap, perovskite environmental stability, and transparent electrode quality and stability.