{"title":"Generating dense depth maps using a patch cloud and local planar surface models","authors":"D. Herrera C., Juho Kannala, J. Heikkila","doi":"10.1109/3DTV.2011.5877169","DOIUrl":null,"url":null,"abstract":"Patch cloud based multi-view stereo methods have proven to be an accurate and scalable approach for scene reconstruction. Their applicability, however, is limited due to the semi-dense nature of their reconstruction. We propose a method to generate a dense depth map from a patch cloud by assuming a planar surface model for non-reconstructed areas. We use local evidence to estimate the best fitting plane around missing areas. We then apply a graph cut optimization to select the best plane for each pixel. We demonstrate our approach with a challenging scene containing planar and non-planar surfaces.","PeriodicalId":158764,"journal":{"name":"2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2011.5877169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Patch cloud based multi-view stereo methods have proven to be an accurate and scalable approach for scene reconstruction. Their applicability, however, is limited due to the semi-dense nature of their reconstruction. We propose a method to generate a dense depth map from a patch cloud by assuming a planar surface model for non-reconstructed areas. We use local evidence to estimate the best fitting plane around missing areas. We then apply a graph cut optimization to select the best plane for each pixel. We demonstrate our approach with a challenging scene containing planar and non-planar surfaces.