Generating dense depth maps using a patch cloud and local planar surface models

D. Herrera C., Juho Kannala, J. Heikkila
{"title":"Generating dense depth maps using a patch cloud and local planar surface models","authors":"D. Herrera C., Juho Kannala, J. Heikkila","doi":"10.1109/3DTV.2011.5877169","DOIUrl":null,"url":null,"abstract":"Patch cloud based multi-view stereo methods have proven to be an accurate and scalable approach for scene reconstruction. Their applicability, however, is limited due to the semi-dense nature of their reconstruction. We propose a method to generate a dense depth map from a patch cloud by assuming a planar surface model for non-reconstructed areas. We use local evidence to estimate the best fitting plane around missing areas. We then apply a graph cut optimization to select the best plane for each pixel. We demonstrate our approach with a challenging scene containing planar and non-planar surfaces.","PeriodicalId":158764,"journal":{"name":"2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2011.5877169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Patch cloud based multi-view stereo methods have proven to be an accurate and scalable approach for scene reconstruction. Their applicability, however, is limited due to the semi-dense nature of their reconstruction. We propose a method to generate a dense depth map from a patch cloud by assuming a planar surface model for non-reconstructed areas. We use local evidence to estimate the best fitting plane around missing areas. We then apply a graph cut optimization to select the best plane for each pixel. We demonstrate our approach with a challenging scene containing planar and non-planar surfaces.
使用补丁云和局部平面模型生成密集深度图
基于补丁云的多视点立体方法已被证明是一种精确的、可扩展的场景重建方法。然而,由于其重建的半密集性质,它们的适用性受到限制。我们提出了一种从斑块云生成密集深度图的方法,该方法通过假设非重建区域的平面模型来生成密集深度图。我们使用局部证据来估计缺失区域周围的最佳拟合平面。然后,我们应用图切优化来为每个像素选择最佳平面。我们用一个包含平面和非平面的具有挑战性的场景来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信