Danielle R. Thomas, Xinyu Yang, Shivang Gupta, A. Adeniran, Elizabeth Mclaughlin, K. Koedinger
{"title":"When the Tutor Becomes the Student: Design and Evaluation of Efficient Scenario-based Lessons for Tutors","authors":"Danielle R. Thomas, Xinyu Yang, Shivang Gupta, A. Adeniran, Elizabeth Mclaughlin, K. Koedinger","doi":"10.1145/3576050.3576089","DOIUrl":null,"url":null,"abstract":"Tutoring is among the most impactful educational influences on student achievement, with perhaps the greatest promise of combating student learning loss. Due to its high impact, organizations are rapidly developing tutoring programs and discovering a common problem- a shortage of qualified, experienced tutors. This mixed methods investigation focuses on the impact of short (∼15 min.), online lessons in which tutors participate in situational judgment tests based on everyday tutoring scenarios. We developed three lessons on strategies for supporting student self-efficacy and motivation and tested them with 80 tutors from a national, online tutoring organization. Using a mixed-effects logistic regression model, we found a statistically significant learning effect indicating tutors performed about 20% higher post-instruction than pre-instruction (β = 0.811, p < 0.01). Tutors scored ∼30% better on selected compared to constructed responses at posttest with evidence that tutors are learning from selected-response questions alone. Learning analytics and qualitative feedback suggest future design modifications for larger scale deployment, such as creating more authentically challenging selected-response options, capturing common misconceptions using learnersourced data, and varying modalities of scenario delivery with the aim of maintaining learning gains while reducing time and effort for tutor participants and trainers.","PeriodicalId":394433,"journal":{"name":"LAK23: 13th International Learning Analytics and Knowledge Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK23: 13th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3576050.3576089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Tutoring is among the most impactful educational influences on student achievement, with perhaps the greatest promise of combating student learning loss. Due to its high impact, organizations are rapidly developing tutoring programs and discovering a common problem- a shortage of qualified, experienced tutors. This mixed methods investigation focuses on the impact of short (∼15 min.), online lessons in which tutors participate in situational judgment tests based on everyday tutoring scenarios. We developed three lessons on strategies for supporting student self-efficacy and motivation and tested them with 80 tutors from a national, online tutoring organization. Using a mixed-effects logistic regression model, we found a statistically significant learning effect indicating tutors performed about 20% higher post-instruction than pre-instruction (β = 0.811, p < 0.01). Tutors scored ∼30% better on selected compared to constructed responses at posttest with evidence that tutors are learning from selected-response questions alone. Learning analytics and qualitative feedback suggest future design modifications for larger scale deployment, such as creating more authentically challenging selected-response options, capturing common misconceptions using learnersourced data, and varying modalities of scenario delivery with the aim of maintaining learning gains while reducing time and effort for tutor participants and trainers.