Incremental classifier fusion for smart societies

G. Bahle, Andreas Poxrucker, G. Kampis, P. Lukowicz
{"title":"Incremental classifier fusion for smart societies","authors":"G. Bahle, Andreas Poxrucker, G. Kampis, P. Lukowicz","doi":"10.1145/3014087.3014118","DOIUrl":null,"url":null,"abstract":"We present an abstract approach to incremental knowledge fusion (classifier fusion) with three different local update rules applied when agents meet. These are: a rule based on the averaging of local information, experience based reputation and transitive reputation, respectively. We introduce and discuss the role of Well Informed Agents (WIAs) in these systems. We analyze each rule in detail and present a comparison that reveals important differences. In particular, best convergence (but with a medium error term) is achieved by the transitive method, whereas middle values of convergence with the smallest error terms are shown by the averaging method. Experience based reputation fares worse of the three, both in terms of convergence speed and error. We discuss consequences for smart societies and directions of future work.","PeriodicalId":224566,"journal":{"name":"Proceedings of the International Conference on Electronic Governance and Open Society: Challenges in Eurasia","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Electronic Governance and Open Society: Challenges in Eurasia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3014087.3014118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an abstract approach to incremental knowledge fusion (classifier fusion) with three different local update rules applied when agents meet. These are: a rule based on the averaging of local information, experience based reputation and transitive reputation, respectively. We introduce and discuss the role of Well Informed Agents (WIAs) in these systems. We analyze each rule in detail and present a comparison that reveals important differences. In particular, best convergence (but with a medium error term) is achieved by the transitive method, whereas middle values of convergence with the smallest error terms are shown by the averaging method. Experience based reputation fares worse of the three, both in terms of convergence speed and error. We discuss consequences for smart societies and directions of future work.
智能社会的增量分类器融合
我们提出了一种抽象的增量知识融合(分类器融合)方法,当agent相遇时应用三种不同的局部更新规则。它们分别是:基于本地信息平均的规则、基于经验的声誉和可传递声誉。我们介绍并讨论了信息灵通代理(Well Informed Agents, WIAs)在这些系统中的作用。我们详细分析了每条规则,并进行了比较,揭示了重要的差异。特别是,最佳收敛(但具有中等误差项)是通过传递方法实现的,而最小误差项的收敛的中间值是通过平均方法显示的。在收敛速度和错误方面,基于经验的声誉在三者中表现更差。我们讨论了智能社会的后果和未来工作的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信