Optimal recovery of functions from anisotropic Sobolev classes on a power – logarithmic scale

A.B. Utessov
{"title":"Optimal recovery of functions from anisotropic Sobolev classes on a power – logarithmic scale","authors":"A.B. Utessov","doi":"10.32523/bulmathenu.2021/3.4","DOIUrl":null,"url":null,"abstract":"In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \\, (2\\le q\\le \\infty )$ is solved. Namely, in the case when the values $l_{N}^{\\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\\bar{\\varphi }_{N} \\left(\\bar{l}_{N}^{(1)} (f),...,\\bar{l}_{N}^{(N)} (f);\\, \\cdot \\right)$ is indicated that implements the established exact order.","PeriodicalId":225533,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. MATHEMATICS. COMPUTER SCIENCE. MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/bulmathenu.2021/3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, within the framework of the C (N) D - formulation of the recovery problem, the problem of optimal recovery of functions from anisotropic Sobolev classes in a power-logarithmic scale in the metric $L^{q} \, (2\le q\le \infty )$ is solved. Namely, in the case when the values $l_{N}^{\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$ of linear functionals $l_{N}^{\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $ defined on the considered functional class are used as numerical information about a function, firstly, the exact order of the recovery error is established, and secondly, a specific computing unit $\bar{\varphi }_{N} \left(\bar{l}_{N}^{(1)} (f),...,\bar{l}_{N}^{(N)} (f);\, \cdot \right)$ is indicated that implements the established exact order.
各向异性Sobolev类函数在幂对数尺度上的最优恢复
本文在恢复问题的C (N) D -公式框架内,解决了度量$L^{q} \, (2\le q\le \infty )$中幂对数尺度各向异性Sobolev类函数的最优恢复问题。即,当将所考虑的泛函类上定义的线性泛函$l_{N}^{\eqref{GrindEQ__1_}} ,...,l_{N}^{(N)} $的值$l_{N}^{\eqref{GrindEQ__1_}} (f),...,l_{N}^{(N)} (f)$作为函数的数值信息时,首先确定恢复误差的精确阶数,然后指定一个特定的计算单元$\bar{\varphi }_{N} \left(\bar{l}_{N}^{(1)} (f),...,\bar{l}_{N}^{(N)} (f);\, \cdot \right)$来实现所确定的精确阶数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信