Dysphonic Voice detection using MDVP Parameters

H. Vinod, R. Sharma, Rahul Shandilya
{"title":"Dysphonic Voice detection using MDVP Parameters","authors":"H. Vinod, R. Sharma, Rahul Shandilya","doi":"10.1109/SCEECS.2018.8546882","DOIUrl":null,"url":null,"abstract":"A new noninvasive method is introduced to detect dysphonic voice using Multi-Dimensional Voice Parameter (MDVP) parameters. Voice can be considered as a multidimensional measurable event. Dysphonia can be accounted as the first presenting symptom of larynx cancer and is caused due to defective mucosal vibrations. MDVP is a commercial software which is very useful in the acoustic analysis of a given voice. Here sustained vowel /a/ is used and 30 MDVP parameters are used for the analysis. This describes the voice objectively and the variation of the parameters can be accounted as the indication of some abnormality. These parameters are fed to an Artificial Neural Network (ANN) which classifies pathological voice from healthy voice. The system gives an overall efficiency of 93.33%.","PeriodicalId":446667,"journal":{"name":"2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEECS.2018.8546882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new noninvasive method is introduced to detect dysphonic voice using Multi-Dimensional Voice Parameter (MDVP) parameters. Voice can be considered as a multidimensional measurable event. Dysphonia can be accounted as the first presenting symptom of larynx cancer and is caused due to defective mucosal vibrations. MDVP is a commercial software which is very useful in the acoustic analysis of a given voice. Here sustained vowel /a/ is used and 30 MDVP parameters are used for the analysis. This describes the voice objectively and the variation of the parameters can be accounted as the indication of some abnormality. These parameters are fed to an Artificial Neural Network (ANN) which classifies pathological voice from healthy voice. The system gives an overall efficiency of 93.33%.
使用MDVP参数的语音检测
介绍了一种基于多维语音参数(MDVP)的非侵入性语音检测方法。声音可以看作是一个多维的可测量事件。发音障碍可以被认为是喉癌的第一个表现症状,是由于粘膜振动缺陷引起的。MDVP是一个商业软件,它是非常有用的声学分析一个给定的声音。这里使用了持续元音/a/,并使用了30个MDVP参数进行分析。这是对声音的客观描述,参数的变化可以被认为是一些异常的指示。这些参数被输入到人工神经网络(ANN)中,该网络对病理声音和健康声音进行分类。该系统的总效率为93.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信