A Banach space theoretical characterization of abelian 𝐶*-algebras

Ryotaro Tanaka
{"title":"A Banach space theoretical characterization of abelian 𝐶*-algebras","authors":"Ryotaro Tanaka","doi":"10.1090/bproc/175","DOIUrl":null,"url":null,"abstract":"<p>A Banach space theoretical characterization of abelian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>- algebras among all <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebras is given. As an application, it is shown that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\">\n <mml:semantics>\n <mml:mi>B</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">B</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Superscript asterisk\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>C</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">C^*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-algebras (nonlinearly) isomorphic to each other with respect to the structure of Birkhoff-James orthogonality, and if either <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\">\n <mml:semantics>\n <mml:mi>B</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">B</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is abelian, then they are <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"asterisk\">\n <mml:semantics>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n <mml:annotation encoding=\"application/x-tex\">*</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-isomorphic. Moreover, it is pointed out that the same kind of characterization is not valid for preduals of abelian von Neumann algebras.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Banach space theoretical characterization of abelian C C^* - algebras among all C C^* -algebras is given. As an application, it is shown that if A A and B B are C C^* -algebras (nonlinearly) isomorphic to each other with respect to the structure of Birkhoff-James orthogonality, and if either A A or B B is abelian, then they are * -isomorphic. Moreover, it is pointed out that the same kind of characterization is not valid for preduals of abelian von Neumann algebras.

abelian *代数的Banach空间理论表征
给出了所有C * C^* -代数中阿贝尔C * C^* -代数的一个巴拿赫空间理论刻划。作为一个应用,证明了如果A A和B B在Birkhoff-James正交结构上是C * C^* -代数(非线性)同构,且A A或B B是阿贝的,则它们是* * -同构。此外,本文还指出,对于阿贝尔-冯-诺伊曼代数的前偶,同样的性质是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信