V. Akbarzadeh, Christian Gagné, M. Parizeau, M. Mostafavi
{"title":"Black-box optimization of sensor placement with elevation maps and probabilistic sensing models","authors":"V. Akbarzadeh, Christian Gagné, M. Parizeau, M. Mostafavi","doi":"10.1109/ROSE.2011.6058544","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel framework to tackle the sensor placement problem using a probabilistic coverage and corresponding membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, L-BFGS, and CMA-ES.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
This paper proposes a framework for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviours and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel framework to tackle the sensor placement problem using a probabilistic coverage and corresponding membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, L-BFGS, and CMA-ES.