{"title":"Detection Methods of Nanoparticles in Plant Tissues","authors":"An Yan, Zhong Chen","doi":"10.5772/INTECHOPEN.74101","DOIUrl":null,"url":null,"abstract":"The increasing use of nanoparticles (NPs) in the world has raised significant concerns about their potential impacts on ecosystems, food safety and human health, leading to an emerging research theme about the interaction between crop plants and NPs. Therefore, a full understanding of plant-NP interaction and phytotoxicological mechanism is required for accurate risk assessment to ensure the safe use of nanoparticle. A range of analytical techniques have been developed to detect and characterize the uptake, translocation, cellular internalization and intracellular biotransformation of nanoparticles in plants. Imaging methodologies, including various electron microscopy, spectrometry-based techniques, together with ICP-based techniques such as ICP-OES, ICP-MS and SP-ICP-MS, have been widely used to obtain information about NPs size, morphology, size distribution, cellular localization, elemental speciation, mass concentration and so on. Due to the complexity of biological samples to be analyzed, these techniques are often combined accordingly to provide complementary information regarding plant-NP interaction. This review provides an introduction to the most widely used techniques in the study of interactions between plants and nanoparticles. In addition, applications of these techniques in the study of plant-NP interaction from recent works are exemplified to illustrate how the understanding of plant-NP interaction is achieved through these techniques. showed the presence of localized Ag accumulation regions with a size of 1–4 μm adhering on the epidermis. Nano-CT technique capable of higher spatial resolution revealed that these","PeriodicalId":261921,"journal":{"name":"New Visions in Plant Science","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Visions in Plant Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
The increasing use of nanoparticles (NPs) in the world has raised significant concerns about their potential impacts on ecosystems, food safety and human health, leading to an emerging research theme about the interaction between crop plants and NPs. Therefore, a full understanding of plant-NP interaction and phytotoxicological mechanism is required for accurate risk assessment to ensure the safe use of nanoparticle. A range of analytical techniques have been developed to detect and characterize the uptake, translocation, cellular internalization and intracellular biotransformation of nanoparticles in plants. Imaging methodologies, including various electron microscopy, spectrometry-based techniques, together with ICP-based techniques such as ICP-OES, ICP-MS and SP-ICP-MS, have been widely used to obtain information about NPs size, morphology, size distribution, cellular localization, elemental speciation, mass concentration and so on. Due to the complexity of biological samples to be analyzed, these techniques are often combined accordingly to provide complementary information regarding plant-NP interaction. This review provides an introduction to the most widely used techniques in the study of interactions between plants and nanoparticles. In addition, applications of these techniques in the study of plant-NP interaction from recent works are exemplified to illustrate how the understanding of plant-NP interaction is achieved through these techniques. showed the presence of localized Ag accumulation regions with a size of 1–4 μm adhering on the epidermis. Nano-CT technique capable of higher spatial resolution revealed that these