Improvement of learning efficiency in neural network using poly-Si TFTs by synapse TFTs with LDD structure

Ryohei Morita, Y. Maeda, T. Matsuda, M. Kimura
{"title":"Improvement of learning efficiency in neural network using poly-Si TFTs by synapse TFTs with LDD structure","authors":"Ryohei Morita, Y. Maeda, T. Matsuda, M. Kimura","doi":"10.1109/AM-FPD.2015.7173224","DOIUrl":null,"url":null,"abstract":"We are developing device-level neural networks using poly-Si TFTs. We succeeded in dramatically reducing the number of transistors in neurons and synapses to integrate a lot of devices, and we also succeeded in actually checking the operation of learning of logics. In this presentation, for the purpose of improvement of learning efficiency, we changed the synapse TFTs from the SD structure to the LDD structure. As a result, we succeeded in improving the learning efficiency by a 5×5 neural network.","PeriodicalId":243757,"journal":{"name":"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2015.7173224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are developing device-level neural networks using poly-Si TFTs. We succeeded in dramatically reducing the number of transistors in neurons and synapses to integrate a lot of devices, and we also succeeded in actually checking the operation of learning of logics. In this presentation, for the purpose of improvement of learning efficiency, we changed the synapse TFTs from the SD structure to the LDD structure. As a result, we succeeded in improving the learning efficiency by a 5×5 neural network.
利用LDD结构的突触tft提高神经网络学习效率
我们正在使用多晶硅tft开发设备级神经网络。我们成功地大大减少了神经元和突触中的晶体管数量,从而集成了许多设备,我们也成功地实际检查了逻辑学习的操作。在本次演讲中,为了提高学习效率,我们将突触tft从SD结构改为LDD结构。结果,我们成功地通过5×5神经网络提高了学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信