Hybrid 3D-IC Cooling System Using Micro-fluidic Cooling and Thermal TSVs

Bing Shi, Ankur Srivastava, A. Bar-Cohen
{"title":"Hybrid 3D-IC Cooling System Using Micro-fluidic Cooling and Thermal TSVs","authors":"Bing Shi, Ankur Srivastava, A. Bar-Cohen","doi":"10.1109/ISVLSI.2012.29","DOIUrl":null,"url":null,"abstract":"3D-ICs bring about new challenges to chip thermal management due to their high heat densities. Micro-channel based liquid cooling and thermal through-silicon-vias (TSVs) have been adopted to alleviate the thermal issues in 3D-ICs. Thermal TSV (which have no electrical significance), enables higher interlayer thermal conductivity thereby achieving a more uniform thermal profile. While somewhat effective in reducing temperatures, they are limited by the nature of the heat sink. On the other hand, micro-channel based liquid cooling is significantly capable of addressing 3D IC cooling needs but consumes a lot of extra power for pumping coolant through channels. This paper proposes a hybrid 3D-IC cooling scheme which combines micro-channel liquid cooling and thermal TSV with one acting as heat removal agent while the other enabling beneficial heat conduction paths to the micro-channel structures. The experimental results show that, the proposed hybrid cooling scheme provides much better cooling capability than using only thermal TSVs, while consuming 55% less cooling power compared with pure micro-channel cooling.","PeriodicalId":398850,"journal":{"name":"2012 IEEE Computer Society Annual Symposium on VLSI","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

3D-ICs bring about new challenges to chip thermal management due to their high heat densities. Micro-channel based liquid cooling and thermal through-silicon-vias (TSVs) have been adopted to alleviate the thermal issues in 3D-ICs. Thermal TSV (which have no electrical significance), enables higher interlayer thermal conductivity thereby achieving a more uniform thermal profile. While somewhat effective in reducing temperatures, they are limited by the nature of the heat sink. On the other hand, micro-channel based liquid cooling is significantly capable of addressing 3D IC cooling needs but consumes a lot of extra power for pumping coolant through channels. This paper proposes a hybrid 3D-IC cooling scheme which combines micro-channel liquid cooling and thermal TSV with one acting as heat removal agent while the other enabling beneficial heat conduction paths to the micro-channel structures. The experimental results show that, the proposed hybrid cooling scheme provides much better cooling capability than using only thermal TSVs, while consuming 55% less cooling power compared with pure micro-channel cooling.
采用微流体冷却和热tsv的混合3D-IC冷却系统
3d集成电路的高热密度给芯片热管理带来了新的挑战。采用基于微通道的液体冷却和热通硅通孔(tsv)来缓解3d集成电路中的热问题。热TSV(没有电学意义)使层间导热系数更高,从而实现更均匀的热剖面。虽然在降低温度方面有些效果,但它们受到散热器性质的限制。另一方面,基于微通道的液体冷却明显能够满足3D集成电路的冷却需求,但通过通道泵送冷却剂会消耗大量额外的功率。本文提出了一种混合3D-IC冷却方案,该方案结合了微通道液冷和热TSV,其中一种作为散热剂,另一种为微通道结构提供有利的热传导路径。实验结果表明,所提出的混合冷却方案比仅使用热tsv具有更好的冷却性能,同时比纯微通道冷却节省55%的冷却功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信