On parameter estimation for neuron models

Jeffrey L. Madden, Zina Ben-Miled, R. Chin, J. Schild
{"title":"On parameter estimation for neuron models","authors":"Jeffrey L. Madden, Zina Ben-Miled, R. Chin, J. Schild","doi":"10.1109/BIBE.2000.889615","DOIUrl":null,"url":null,"abstract":"Membrane bound ion channels give rise to many of the electrical signal characteristics exhibited by neurons. Ion channel models of neural function such as that proposed by Hodgkin-Huxley can be represented as a set of differential equations. Solving these differential equations for a given neuron involves finding optimal values for the parameters that define the Hodgkin-Huxley equations. Most often, these parameters are evaluated using an optimization algorithm that takes as input ion channel current data recorded from a neuron using the voltage clamp technique. Real-valued optimization algorithms often fail to find a global optimum for the parameters of the Hodgkin-Huxley differential equations. Here, the authors show that interval analysis based optimization algorithm, a branch and bound algorithm, provides an accurate solution for the Hodgkin-Huxley model.","PeriodicalId":196846,"journal":{"name":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2000.889615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Membrane bound ion channels give rise to many of the electrical signal characteristics exhibited by neurons. Ion channel models of neural function such as that proposed by Hodgkin-Huxley can be represented as a set of differential equations. Solving these differential equations for a given neuron involves finding optimal values for the parameters that define the Hodgkin-Huxley equations. Most often, these parameters are evaluated using an optimization algorithm that takes as input ion channel current data recorded from a neuron using the voltage clamp technique. Real-valued optimization algorithms often fail to find a global optimum for the parameters of the Hodgkin-Huxley differential equations. Here, the authors show that interval analysis based optimization algorithm, a branch and bound algorithm, provides an accurate solution for the Hodgkin-Huxley model.
神经元模型的参数估计
膜结合离子通道产生了神经元所表现出的许多电信号特征。神经功能的离子通道模型,如霍奇金-赫胥黎提出的,可以表示为一组微分方程。求解给定神经元的这些微分方程需要找到定义霍奇金-赫胥黎方程的参数的最优值。大多数情况下,这些参数是使用一种优化算法来评估的,该算法将使用电压钳技术从神经元记录的离子通道电流数据作为输入。实值优化算法往往不能找到霍奇金-赫胥黎微分方程参数的全局最优解。在这里,作者证明了基于区间分析的优化算法,即分支定界算法,为Hodgkin-Huxley模型提供了一个精确的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信