Improved Chain-Block Algorithm to RVM on Large Scale Problems

Gang Li, Shu-Bao Xing, Hui-feng Xue
{"title":"Improved Chain-Block Algorithm to RVM on Large Scale Problems","authors":"Gang Li, Shu-Bao Xing, Hui-feng Xue","doi":"10.1109/ICMECG.2009.21","DOIUrl":null,"url":null,"abstract":"RVM enables sparse classification and regression functions to be obtained by linearly-weighting a small number of fixed basis functions from a large dictionary of potential candidates.TOA on RVM has O(M3) time and O(M2) space complexity, where M is the training set size. It is thus computationally infeasible on very large data sets. We propose I-CBA based on CBA, I-CBA set iteration initial center as the iteration solution last time,reduce the time complexitiy further more with keeping high accuracy and sparsity simultaneously. Regression experiments with synthetical large benchmark data set demonstrates I-CBA yields state-of-the-art performance.","PeriodicalId":252323,"journal":{"name":"2009 International Conference on Management of e-Commerce and e-Government","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Management of e-Commerce and e-Government","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECG.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RVM enables sparse classification and regression functions to be obtained by linearly-weighting a small number of fixed basis functions from a large dictionary of potential candidates.TOA on RVM has O(M3) time and O(M2) space complexity, where M is the training set size. It is thus computationally infeasible on very large data sets. We propose I-CBA based on CBA, I-CBA set iteration initial center as the iteration solution last time,reduce the time complexitiy further more with keeping high accuracy and sparsity simultaneously. Regression experiments with synthetical large benchmark data set demonstrates I-CBA yields state-of-the-art performance.
大规模RVM问题的改进链块算法
RVM使稀疏分类和回归函数能够通过从潜在候选的大字典中对少量固定基函数进行线性加权来获得。RVM上的TOA具有O(M3)的时间复杂度和O(M2)的空间复杂度,其中M为训练集大小。因此,在非常大的数据集上,它在计算上是不可行的。我们在CBA的基础上提出了I-CBA, I-CBA将迭代初始中心设置为上一次的迭代解,进一步降低了时间复杂度,同时保持了较高的精度和稀疏性。综合大型基准数据集的回归实验表明,I-CBA产生了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信