{"title":"Numerical Simulation of NO Production in Air-Staged Pulverized Coal Fired Furnace~!2009-10-07~!2009-11-11~!2010-04-16~!","authors":"R. Straka, M. Beneš","doi":"10.2174/1874396X01004020027","DOIUrl":null,"url":null,"abstract":"We describe behavior of the air-coal mixture using the Navier-Stokes equations for the mixture of air and coal particles, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to RT E e ). We also consider the heat transfer via conduction and radiation. The system of PDEs is discretized using the finite volume method (FVM) and an advection upstream splitting method as the Riemann solver. The resulting ODEs are solved using the 4th-order Runge-Kutta method. Simulation results for typical power production level are presented together with the air-staging impact on NO production.","PeriodicalId":238681,"journal":{"name":"The Open Thermodynamics Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Thermodynamics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874396X01004020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe behavior of the air-coal mixture using the Navier-Stokes equations for the mixture of air and coal particles, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to RT E e ). We also consider the heat transfer via conduction and radiation. The system of PDEs is discretized using the finite volume method (FVM) and an advection upstream splitting method as the Riemann solver. The resulting ODEs are solved using the 4th-order Runge-Kutta method. Simulation results for typical power production level are presented together with the air-staging impact on NO production.