{"title":"Near-Linear-Phase IIR Filters Using Gauss-Newton Optimization","authors":"Jasper Tan, C. Burrus","doi":"10.1109/MWSCAS.2019.8885116","DOIUrl":null,"url":null,"abstract":"In this paper, we present a simple optimization-based method for designing near-linear-phase IIR filters based on the Gauss-Newton method, and we explore its benefits over symmetric FIR filters. We demonstrate IIR low-pass filters with lower group delay, lower order, and lower magnitude errors than corresponding FIR filters while still maintaining a phase response linearity of R2 ≥ 0.99 in the passband. Such filters can be beneficial in applications where approximate, rather than exact, linear phase is sufficient. Code is available on the author’s website.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present a simple optimization-based method for designing near-linear-phase IIR filters based on the Gauss-Newton method, and we explore its benefits over symmetric FIR filters. We demonstrate IIR low-pass filters with lower group delay, lower order, and lower magnitude errors than corresponding FIR filters while still maintaining a phase response linearity of R2 ≥ 0.99 in the passband. Such filters can be beneficial in applications where approximate, rather than exact, linear phase is sufficient. Code is available on the author’s website.