Space efficient fast isosurface extraction for large datasets

U. Bordoloi, Han-Wei Shen
{"title":"Space efficient fast isosurface extraction for large datasets","authors":"U. Bordoloi, Han-Wei Shen","doi":"10.1109/VISUAL.2003.1250373","DOIUrl":null,"url":null,"abstract":"In this paper, we present a space efficient algorithm for speeding up isosurface extraction. Even though there exist algorithms that can achieve optimal search performance to identify isosurface cells, they prove impractical for large datasets due to a high storage overhead. With the dual goals of achieving fast isosurface extraction and simultaneously reducing the space requirement, we introduce an algorithm based on transform coding to compress the interval information of the cells in a dataset. Compression is achieved by first transforming the cell intervals (minima, maxima) into a form which allows more efficient compaction. It is followed by a dataset optimized non-uniform quantization stage. The compressed data is stored in a data structure that allows fast searches in the compression domain, thus eliminating the need to retrieve the original representation of the intervals at run-time. The space requirement of our search data structure is the mandatory cost of storing every cell ID once, plus an overhead for quantization information. The overhead is typically in the order of a few hundredths of the dataset size.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In this paper, we present a space efficient algorithm for speeding up isosurface extraction. Even though there exist algorithms that can achieve optimal search performance to identify isosurface cells, they prove impractical for large datasets due to a high storage overhead. With the dual goals of achieving fast isosurface extraction and simultaneously reducing the space requirement, we introduce an algorithm based on transform coding to compress the interval information of the cells in a dataset. Compression is achieved by first transforming the cell intervals (minima, maxima) into a form which allows more efficient compaction. It is followed by a dataset optimized non-uniform quantization stage. The compressed data is stored in a data structure that allows fast searches in the compression domain, thus eliminating the need to retrieve the original representation of the intervals at run-time. The space requirement of our search data structure is the mandatory cost of storing every cell ID once, plus an overhead for quantization information. The overhead is typically in the order of a few hundredths of the dataset size.
大数据集的空间高效快速等值面提取
在本文中,我们提出了一种空间高效的算法来加速等值面提取。尽管存在可以实现最佳搜索性能的算法来识别等值面单元,但由于存储开销高,它们对于大型数据集来说是不切实际的。为了实现快速等值面提取和同时减少空间需求的双重目标,提出了一种基于变换编码的数据集中单元格间隔信息压缩算法。压缩是通过首先将单元间隔(最小值、最大值)转换为允许更有效压缩的形式来实现的。然后是数据集优化的非均匀量化阶段。压缩后的数据存储在一个数据结构中,该结构允许在压缩域中进行快速搜索,从而消除了在运行时检索间隔的原始表示的需要。我们的搜索数据结构的空间需求是存储每个单元格ID一次的强制成本,加上量化信息的开销。开销通常是数据集大小的百分之几。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信