{"title":"Taming irregular EDA applications on GPUs","authors":"Yangdong Deng, Bo D. Wang, Shuai Mu","doi":"10.1145/1687399.1687501","DOIUrl":null,"url":null,"abstract":"Recently general purpose computing on graphic processing units (GPUs) is rising as an exciting new trend in high-performance computing. Thus it is appealing to study the potential of GPU for Electronic Design Automation (EDA) applications. However, EDA generally involves irregular data structures such as sparse matrix and graph operations, which pose significant challenges for efficient GPU implementations. In this paper, we propose high-performance GPU implementations for two important irregular EDA computing patterns, Sparse-Matrix Vector Product (SMVP) and graph traversal. On a wide range of EDA problem instances, our SMVP implementations outperform all published work and achieve a speedup of one order of magnitude over the CPU baseline. Upon such a basis, both timing analysis and linear system solution can be considerably accelerated. We also introduce a SMVP based formulation for Breadth-First Search and observe considerable speedup on GPU implementations. Our results suggest that the power of GPU computing can be successfully unleashed through designing GPU-friendly algorithms and/or re-organizing computing structures of current algorithms.","PeriodicalId":256358,"journal":{"name":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1687399.1687501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96
Abstract
Recently general purpose computing on graphic processing units (GPUs) is rising as an exciting new trend in high-performance computing. Thus it is appealing to study the potential of GPU for Electronic Design Automation (EDA) applications. However, EDA generally involves irregular data structures such as sparse matrix and graph operations, which pose significant challenges for efficient GPU implementations. In this paper, we propose high-performance GPU implementations for two important irregular EDA computing patterns, Sparse-Matrix Vector Product (SMVP) and graph traversal. On a wide range of EDA problem instances, our SMVP implementations outperform all published work and achieve a speedup of one order of magnitude over the CPU baseline. Upon such a basis, both timing analysis and linear system solution can be considerably accelerated. We also introduce a SMVP based formulation for Breadth-First Search and observe considerable speedup on GPU implementations. Our results suggest that the power of GPU computing can be successfully unleashed through designing GPU-friendly algorithms and/or re-organizing computing structures of current algorithms.