Automatic prediction of paroxysmal atrial fibrillation in patients with heart arrhythmia

D. Arotaritei, C. Rotariu
{"title":"Automatic prediction of paroxysmal atrial fibrillation in patients with heart arrhythmia","authors":"D. Arotaritei, C. Rotariu","doi":"10.1109/ICEPE.2014.6969969","DOIUrl":null,"url":null,"abstract":"A new predictor that takes into accounts the randomness of RR interval before PAFib is proposed. Using data mining techniques, temporal patterns are identified based their presence in ECG that precedes paroxysmal atrial fibrillation (PAF) and not present in patients with normal ECG. The algorithm used the supposition that the premature atrial complexes (PAC) are responsible for most of PAF. Other statistical parameters that are related to randomness of signal are used to improve the accuracy of proposed algorithm.","PeriodicalId":271843,"journal":{"name":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2014.6969969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A new predictor that takes into accounts the randomness of RR interval before PAFib is proposed. Using data mining techniques, temporal patterns are identified based their presence in ECG that precedes paroxysmal atrial fibrillation (PAF) and not present in patients with normal ECG. The algorithm used the supposition that the premature atrial complexes (PAC) are responsible for most of PAF. Other statistical parameters that are related to randomness of signal are used to improve the accuracy of proposed algorithm.
心律失常患者阵发性心房颤动的自动预测
提出了一种考虑PAFib前RR区间随机性的预测因子。使用数据挖掘技术,根据发作性心房颤动(PAF)之前的心电图中存在的时间模式识别,而心电图正常的患者不存在时间模式。该算法假设早衰房颤主要由早衰房颤引起。利用与信号随机性相关的其他统计参数来提高算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信