Scene text localization using extremal regions and Corner-HOG feature

Yuanyuan Feng, Yonghong Song, Yuanlin Zhang
{"title":"Scene text localization using extremal regions and Corner-HOG feature","authors":"Yuanyuan Feng, Yonghong Song, Yuanlin Zhang","doi":"10.1109/ROBIO.2015.7418882","DOIUrl":null,"url":null,"abstract":"This paper presents a text detection method based on Extremal Regions (ERs) and Corner-HOG feature. Local Histogram of Oriented Gradient (HOG) extracted around corners (Corner-HOG) is used to effectively prune the non-text components in the component tree. Experimental results show that the Corner-HOG based pruning method can discard an average of 83.06% of all ERs in an image while preserving a recall of 90.51% of the text components. The remaining ERs are then grouped into text lines and candidate text lines are verified using black-white transition feature and the covariance descriptor of HOG. Experimental results on the 2011 Robust Reading Competition dataset show that the proposed text detection method provides promising performance.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a text detection method based on Extremal Regions (ERs) and Corner-HOG feature. Local Histogram of Oriented Gradient (HOG) extracted around corners (Corner-HOG) is used to effectively prune the non-text components in the component tree. Experimental results show that the Corner-HOG based pruning method can discard an average of 83.06% of all ERs in an image while preserving a recall of 90.51% of the text components. The remaining ERs are then grouped into text lines and candidate text lines are verified using black-white transition feature and the covariance descriptor of HOG. Experimental results on the 2011 Robust Reading Competition dataset show that the proposed text detection method provides promising performance.
基于极值区域和Corner-HOG特征的场景文本定位
提出了一种基于极值区域和角hog特征的文本检测方法。利用拐角提取的局部定向梯度直方图(HOG) (Corner-HOG)对组件树中的非文本组件进行有效的剪枝。实验结果表明,基于Corner-HOG的剪枝方法可以平均丢弃图像中83.06%的er,同时保留90.51%的文本成分查全率。然后将剩余的er分组为文本行,并使用黑白过渡特征和HOG协方差描述符对候选文本行进行验证。在2011年鲁棒阅读大赛数据集上的实验结果表明,本文提出的文本检测方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信