Minimum description length and clustering with exemplars

Po-Hsiang Lai, J. O’Sullivan, Robert Pless
{"title":"Minimum description length and clustering with exemplars","authors":"Po-Hsiang Lai, J. O’Sullivan, Robert Pless","doi":"10.1109/ISIT.2009.5205937","DOIUrl":null,"url":null,"abstract":"We propose an information-theoretic clustering framework for density-based clustering and similarity or distance-based clustering with objective functions of clustering performance derived from stochastic complexity and minimum description length (MDL) arguments. Under this framework, the number of clusters and parameters can be determined in a principled way without prior knowledge from users. We show that similarity-based clustering can be viewed as combinatorial optimization on graphs. We propose two clustering algorithms, one of which relies on a minimum arborescence tree algorithm which returns optimal clustering under the proposed MDL objective function for similarity-based clustering. We demonstrate clustering performance on synthetic data.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose an information-theoretic clustering framework for density-based clustering and similarity or distance-based clustering with objective functions of clustering performance derived from stochastic complexity and minimum description length (MDL) arguments. Under this framework, the number of clusters and parameters can be determined in a principled way without prior knowledge from users. We show that similarity-based clustering can be viewed as combinatorial optimization on graphs. We propose two clustering algorithms, one of which relies on a minimum arborescence tree algorithm which returns optimal clustering under the proposed MDL objective function for similarity-based clustering. We demonstrate clustering performance on synthetic data.
最小的描述长度和聚类与范例
我们提出了一种基于信息理论的聚类框架,用于基于密度的聚类和基于相似性或基于距离的聚类,其聚类性能的目标函数来源于随机复杂性和最小描述长度(MDL)参数。在此框架下,可以在不需要用户先验知识的情况下,以原则性的方式确定聚类的数量和参数。我们证明了基于相似性的聚类可以被看作是图的组合优化。我们提出了两种聚类算法,其中一种算法依赖于最小树形树算法,该算法在提出的MDL目标函数下返回最优聚类,用于基于相似性的聚类。我们演示了在合成数据上的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信