Gonzalo Bardález-Trigoso, Jean Pablo Bazán-Arzapalo, Junior Fabián, Pedro Montenegro-Montori
{"title":"Detección del SARS-CoV-2 en radiografías de tórax por medio de descriptores intermedios y técnicas de machine learning","authors":"Gonzalo Bardález-Trigoso, Jean Pablo Bazán-Arzapalo, Junior Fabián, Pedro Montenegro-Montori","doi":"10.26439/ciis2020.5505","DOIUrl":null,"url":null,"abstract":"El SARS-CoV-2, que causa la enfermedad del COVID-19, es un virus que se ha expandido rápidamente por el mundo, teniendo como lugar de inicio la ciudad de Wuhan, en China. A la fecha se han detectado más de 36 738 525 casos a nivel mundial. La tasa de infectados aumenta diariamente y la capacidad sanitaria no se da abasto. Por estas razones, se ha venido proponiendo una variedad de métodos para identificar el novel coronavirus con mayor rapidez y a menor costo. Un ejemplo de estos métodos para identificar la enfermedad es el COVID-Net, una red convolucional que identifica el COVID-19, neumonía o pulmones en condición normal. En este trabajo se propone una metodología para identificar y clasifi car imágenes de radiografías de tórax que tienen el COVID-19, neumonía o sin condición. Para esto se utilizaron extractores de características intermedias: HOG+PCA, SIFT+K-means y SURF+K-means, combinados con un SVM como clasificador; además, se emplearon tres estructuras CNN: VGG19, Densenet121 y MobilnetV2. Se utilizó la base de datos COVIDx3 que consta de 15 476 imágenes radiográficas de pulmón. Se obtuvieron buenos resultados, y se determinó que la mejor de las combinaciones fue la que utilizó MobilnetV2 con aumento de datos obteniendo una sensitividad por clase COVID-19 de 0,97 y en promedio una precisión y sensitividad de 0,92 y 0,91. Debido al contexto de la crisis sanitaria generada por el COVID-19, este trabajo se presenta como un apoyo para la detección de esta enfermedad y como marco de referencia para futuras investigaciones.","PeriodicalId":256978,"journal":{"name":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2020.5505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
El SARS-CoV-2, que causa la enfermedad del COVID-19, es un virus que se ha expandido rápidamente por el mundo, teniendo como lugar de inicio la ciudad de Wuhan, en China. A la fecha se han detectado más de 36 738 525 casos a nivel mundial. La tasa de infectados aumenta diariamente y la capacidad sanitaria no se da abasto. Por estas razones, se ha venido proponiendo una variedad de métodos para identificar el novel coronavirus con mayor rapidez y a menor costo. Un ejemplo de estos métodos para identificar la enfermedad es el COVID-Net, una red convolucional que identifica el COVID-19, neumonía o pulmones en condición normal. En este trabajo se propone una metodología para identificar y clasifi car imágenes de radiografías de tórax que tienen el COVID-19, neumonía o sin condición. Para esto se utilizaron extractores de características intermedias: HOG+PCA, SIFT+K-means y SURF+K-means, combinados con un SVM como clasificador; además, se emplearon tres estructuras CNN: VGG19, Densenet121 y MobilnetV2. Se utilizó la base de datos COVIDx3 que consta de 15 476 imágenes radiográficas de pulmón. Se obtuvieron buenos resultados, y se determinó que la mejor de las combinaciones fue la que utilizó MobilnetV2 con aumento de datos obteniendo una sensitividad por clase COVID-19 de 0,97 y en promedio una precisión y sensitividad de 0,92 y 0,91. Debido al contexto de la crisis sanitaria generada por el COVID-19, este trabajo se presenta como un apoyo para la detección de esta enfermedad y como marco de referencia para futuras investigaciones.