Invariance-Based Approach Explains Empirical Formulas from Pavement Engineering to Deep Learning

Edgar Daniel Rodriguez Velasquez, O. Kosheleva, V. Kreinovich
{"title":"Invariance-Based Approach Explains Empirical Formulas from Pavement Engineering to Deep Learning","authors":"Edgar Daniel Rodriguez Velasquez, O. Kosheleva, V. Kreinovich","doi":"10.54364/aaiml.2022.1130","DOIUrl":null,"url":null,"abstract":"In many application areas, there are effective empirical formulas that need explanation. In this paper, we focus on two such challenges: neural networks, where a so-called softplus activation function is known to be very efficient, and pavement engineering, where there are empirical formulas describing the dependence of the pavement strength on the properties of the underlying soil. We show that similar scale-invariance ideas can explain both types of formulas – and, in the case of pavement engineering, invariance ideas can lead to a new formula that combines the advantages of several known ones.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54364/aaiml.2022.1130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many application areas, there are effective empirical formulas that need explanation. In this paper, we focus on two such challenges: neural networks, where a so-called softplus activation function is known to be very efficient, and pavement engineering, where there are empirical formulas describing the dependence of the pavement strength on the properties of the underlying soil. We show that similar scale-invariance ideas can explain both types of formulas – and, in the case of pavement engineering, invariance ideas can lead to a new formula that combines the advantages of several known ones.
基于不变性的方法解释从路面工程到深度学习的经验公式
在许多应用领域中,存在着需要解释的有效经验公式。在本文中,我们专注于两个这样的挑战:神经网络,其中所谓的softplus激活函数被认为是非常有效的,以及路面工程,其中有经验公式描述路面强度对下垫土特性的依赖。我们表明,类似的尺度不变性思想可以解释这两种类型的公式,并且,在路面工程的情况下,不变性思想可以导致一个新的公式,它结合了几个已知公式的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信