Vehicle tracking and motion prediction in complex urban scenarios

Christoph Hermes, Julian Einhaus, Markus Hahn, C. Wöhler, F. Kummert
{"title":"Vehicle tracking and motion prediction in complex urban scenarios","authors":"Christoph Hermes, Julian Einhaus, Markus Hahn, C. Wöhler, F. Kummert","doi":"10.1109/IVS.2010.5548014","DOIUrl":null,"url":null,"abstract":"The recognition of potentially hazardous situations on road intersections is an indispensable skill of future driver assistance systems. In this context, this study focuses on the task of vehicle tracking in combination with a long-term motion prediction (1-2 s into the future) in a dynamic scenario. A motion-attributed stereo point cloud obtained using computationally efficient feature-based methods represents the scene, relying on images of a stereo camera system mounted on a vehicle. A two-stage mean-shift algorithm is used for detection and tracking of the traffic participants. A hierarchical setup depending on the history of the tracked object is applied for prediction. This includes prediction by optical flow, a standard kinematic prediction, and a particle filter based motion pattern method relying on learned object trajectories. The evaluation shows that the proposed system is able to track the road users in a stable manner and predict their positions at least one order of magnitude more accurately than a standard kinematic prediction method.","PeriodicalId":123266,"journal":{"name":"2010 IEEE Intelligent Vehicles Symposium","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2010.5548014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

The recognition of potentially hazardous situations on road intersections is an indispensable skill of future driver assistance systems. In this context, this study focuses on the task of vehicle tracking in combination with a long-term motion prediction (1-2 s into the future) in a dynamic scenario. A motion-attributed stereo point cloud obtained using computationally efficient feature-based methods represents the scene, relying on images of a stereo camera system mounted on a vehicle. A two-stage mean-shift algorithm is used for detection and tracking of the traffic participants. A hierarchical setup depending on the history of the tracked object is applied for prediction. This includes prediction by optical flow, a standard kinematic prediction, and a particle filter based motion pattern method relying on learned object trajectories. The evaluation shows that the proposed system is able to track the road users in a stable manner and predict their positions at least one order of magnitude more accurately than a standard kinematic prediction method.
复杂城市场景下的车辆跟踪与运动预测
对十字路口潜在危险情况的识别是未来驾驶员辅助系统不可或缺的技能。在此背景下,本研究的重点是在动态场景中结合车辆跟踪和长期运动预测(未来1-2秒)的任务。依靠安装在车辆上的立体摄像机系统的图像,使用计算效率高的基于特征的方法获得的运动属性立体点云代表了场景。采用两阶段均值移位算法对交通参与者进行检测和跟踪。根据跟踪对象的历史记录应用分层设置进行预测。这包括光流预测、标准运动学预测和基于粒子滤波的运动模式方法,这些方法依赖于学习到的物体轨迹。评估表明,该系统能够以稳定的方式跟踪道路使用者,并比标准运动学预测方法至少准确地预测其位置一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信