Analytical solution for a steady-state Kalman filter tracker with random power spectral density process noise

J. J. Sudano
{"title":"Analytical solution for a steady-state Kalman filter tracker with random power spectral density process noise","authors":"J. J. Sudano","doi":"10.1109/NAECON.1995.522020","DOIUrl":null,"url":null,"abstract":"An analytical solution is obtained for a steady-state Kalman filter tracker with a random power spectral density as process noise. Great insight is obtained from these analytic solutions of trackers. Optimal relationships are obtained between the gain variables. A unitless tracking index is defined as the only variable driving the steady-state Kalman filter tracker. This unitless tracking index value is defined as: /spl Lambda/=/spl radic/(psd8(/spl Delta/T)/sup 3///spl sigma//sub m//sup 2/). Optimal gains and minimum covariance are analytically calculated given the tracking index /spl Lambda/A.","PeriodicalId":171918,"journal":{"name":"Proceedings of the IEEE 1995 National Aerospace and Electronics Conference. NAECON 1995","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1995 National Aerospace and Electronics Conference. NAECON 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1995.522020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An analytical solution is obtained for a steady-state Kalman filter tracker with a random power spectral density as process noise. Great insight is obtained from these analytic solutions of trackers. Optimal relationships are obtained between the gain variables. A unitless tracking index is defined as the only variable driving the steady-state Kalman filter tracker. This unitless tracking index value is defined as: /spl Lambda/=/spl radic/(psd8(/spl Delta/T)/sup 3///spl sigma//sub m//sup 2/). Optimal gains and minimum covariance are analytically calculated given the tracking index /spl Lambda/A.
具有随机功率谱密度过程噪声的稳态卡尔曼滤波跟踪器的解析解
得到了以随机功率谱密度作为过程噪声的稳态卡尔曼滤波跟踪器的解析解。从这些跟踪器的解析解中获得了很好的洞察力。得到了增益变量之间的最优关系。将无单位跟踪指标定义为驱动稳态卡尔曼滤波跟踪器的唯一变量。这个无单位跟踪指标值定义为:/spl Lambda/=/spl radial /(psd8(/spl Delta/T)/sup 3/// /spl sigma//sub m//sup 2/)。给定跟踪指数/spl Lambda/A,分析计算最佳增益和最小协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信