The methodology of the archival aerial image orientation based on the SfM method

A. Karwel, J. Markiewicz
{"title":"The methodology of the archival aerial image orientation based on the SfM method","authors":"A. Karwel, J. Markiewicz","doi":"10.55627/smla.001.02.0015","DOIUrl":null,"url":null,"abstract":"Nowadays, archival images find increasingly finding their way into geospatial applications, namely, among others, multi-temporal analysis, documentation reconstruction or change detection. It is, therefore, necessary to determine the images' external orientation elements that allow the images' position to be reconstructed in the assumed reference system. This paper aims to present a methodology for the extended evaluation of the automatic orientation process of archival images based on the commonly used Structure-from-Motion (SfM) approach. The work carried out presents: (1) the influence of parameter selection on the accuracy, number and distribution of tie points in the descriptor matching process at the pairwise image bundling stage using the descriptor matching approach together with the use of Random sample consensus filtered triangulation (RANSAC), (2) analyses of the reciprocal orientation quality of the images on detected points (control points) in the bundle adjustment process using simultaneous verification of the matching quality on check points, and (3) analysis of the external orientation accuracy. Points detected and matched using the SIFT algorithm on archival images of a fragment of Warsaw from 1986, 1994, and 2014 were used as reference data. A comparative analysis of the obtained results with the data obtained using the algorithms implemented in the Agisoft Metashape software (standard approach) shows that the relative orientation reprojection RMSE is about 4 time better, and detected points are even more robust.","PeriodicalId":332959,"journal":{"name":"Sensors and Machine Learning Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Machine Learning Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55627/smla.001.02.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, archival images find increasingly finding their way into geospatial applications, namely, among others, multi-temporal analysis, documentation reconstruction or change detection. It is, therefore, necessary to determine the images' external orientation elements that allow the images' position to be reconstructed in the assumed reference system. This paper aims to present a methodology for the extended evaluation of the automatic orientation process of archival images based on the commonly used Structure-from-Motion (SfM) approach. The work carried out presents: (1) the influence of parameter selection on the accuracy, number and distribution of tie points in the descriptor matching process at the pairwise image bundling stage using the descriptor matching approach together with the use of Random sample consensus filtered triangulation (RANSAC), (2) analyses of the reciprocal orientation quality of the images on detected points (control points) in the bundle adjustment process using simultaneous verification of the matching quality on check points, and (3) analysis of the external orientation accuracy. Points detected and matched using the SIFT algorithm on archival images of a fragment of Warsaw from 1986, 1994, and 2014 were used as reference data. A comparative analysis of the obtained results with the data obtained using the algorithms implemented in the Agisoft Metashape software (standard approach) shows that the relative orientation reprojection RMSE is about 4 time better, and detected points are even more robust.
基于SfM方法的档案航拍图像定位方法
如今,档案图像越来越多地进入地理空间应用,即多时间分析、文档重建或变化检测等。因此,有必要确定图像的外部取向元素,使图像的位置能够在假设的参照系中重建。本文旨在提出一种基于常用的运动结构(SfM)方法对档案图像自动定位过程进行扩展评估的方法。所开展的工作有:(1)利用描述子匹配方法结合随机样本一致滤波三角剖分(RANSAC),研究参数选择对成对图像捆绑阶段描述子匹配过程中结合点精度、数量和分布的影响;(2)利用同时验证检查点匹配质量,分析捆绑调整过程中检测点(控制点)上图像的互向质量;(3)外定位精度分析。使用SIFT算法对1986年、1994年和2014年的华沙碎片档案图像进行点检测和匹配作为参考数据。将得到的结果与Agisoft Metashape软件(标准方法)中实现的算法得到的数据进行对比分析,结果表明,相对方向重投影的RMSE约好4倍,检测点的鲁棒性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信