Adaptive Employee Profile Classification for Resource Planning Tool

Tere Gonzalez, P. Santos, Fernando Orozco, M. Alcaraz-Mejia, Victor Zaldivar, Alberto De Obeso, A. García
{"title":"Adaptive Employee Profile Classification for Resource Planning Tool","authors":"Tere Gonzalez, P. Santos, Fernando Orozco, M. Alcaraz-Mejia, Victor Zaldivar, Alberto De Obeso, A. García","doi":"10.1109/SRII.2012.67","DOIUrl":null,"url":null,"abstract":"Matching the right people to the right job considering constraints such as qualifications, availability and cost is the cornerstone of IT projects delivery services. We present a study to improve data accuracy and completeness for resource matching by integrating unstructured data sources and introducing text mining techniques to dynamically adapt resource profile for resource planning decisions. Our approach discovers resource categories by extracting and learning new patterns from employee resumes; and incorporating resource experience for the job-matching optimization during the resource planning exercise.","PeriodicalId":110778,"journal":{"name":"2012 Annual SRII Global Conference","volume":"2083 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Annual SRII Global Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRII.2012.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Matching the right people to the right job considering constraints such as qualifications, availability and cost is the cornerstone of IT projects delivery services. We present a study to improve data accuracy and completeness for resource matching by integrating unstructured data sources and introducing text mining techniques to dynamically adapt resource profile for resource planning decisions. Our approach discovers resource categories by extracting and learning new patterns from employee resumes; and incorporating resource experience for the job-matching optimization during the resource planning exercise.
基于资源规划工具的自适应员工档案分类
考虑诸如资格、可用性和成本等限制因素,将合适的人员与合适的工作相匹配是IT项目交付服务的基石。本文通过整合非结构化数据源和引入文本挖掘技术来动态调整资源配置文件,从而提高资源匹配数据的准确性和完整性。我们的方法通过从员工简历中提取和学习新的模式来发现资源类别;并在资源规划过程中结合资源经验进行岗位匹配优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信