Soft Sensing of Polypropylene Melt Index Based on Improved RBF Network

Ling Yang, Jie Hao, Zhuojun Chen
{"title":"Soft Sensing of Polypropylene Melt Index Based on Improved RBF Network","authors":"Ling Yang, Jie Hao, Zhuojun Chen","doi":"10.1109/CISE.2010.5676963","DOIUrl":null,"url":null,"abstract":"In view of the problem in the practical application of radial basis function (RBF) network, such as the number of nodes in the hidden layer and the parameters (w, c, and σ) are hard to determine, an improved particle swarm optimization (PSO) algorithm which makes use of the advantages of PSO algorithm and genetic algorithm (GA) is proposed, and then optimize the RBF network model with the new algorithm for soft sensing of polypropylene melt index. Simulation results show that the new method can improve the network's training speed and predictive precision effectively, and is more suitable for soft sensing of polypropylene melt index.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5676963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the problem in the practical application of radial basis function (RBF) network, such as the number of nodes in the hidden layer and the parameters (w, c, and σ) are hard to determine, an improved particle swarm optimization (PSO) algorithm which makes use of the advantages of PSO algorithm and genetic algorithm (GA) is proposed, and then optimize the RBF network model with the new algorithm for soft sensing of polypropylene melt index. Simulation results show that the new method can improve the network's training speed and predictive precision effectively, and is more suitable for soft sensing of polypropylene melt index.
基于改进RBF网络的聚丙烯熔体指数软测量
针对径向基函数(RBF)网络在实际应用中存在的隐层节点数和参数(w、c、σ)难以确定等问题,利用粒子群算法和遗传算法的优点,提出了一种改进的粒子群算法(PSO),并用该算法对RBF网络模型进行优化,用于聚丙烯熔体指数的软检测。仿真结果表明,该方法能有效提高网络的训练速度和预测精度,更适合于聚丙烯熔体指数的软测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信