K-means aided Kalman Filter noise estimation calibration for integrated GPS/INS Navigation

Chen Rui
{"title":"K-means aided Kalman Filter noise estimation calibration for integrated GPS/INS Navigation","authors":"Chen Rui","doi":"10.1109/ICITE.2016.7581325","DOIUrl":null,"url":null,"abstract":"GPS/INS integrated Kalman Filter is widely used in vehicle navigation. Conventional Kalman Filter is based on the assumption that noise covariances are fully estimated as Gaussian. However, GPS/INS integrated systems may encounter with inaccurate noise estimation, transient interference, hence noise estimation calibration is required. In this paper, a novel method is proposed, it uses K-Means clustering to automatically identify and discard transient interferences. This method does not require a priori knowledge of transient interferes, and both noise estimation in dynamic update process and measurement update process can be calibrated. Only steady measurement errors are used to calibrate noise estimation. Experiment results show the effectiveness of this method.","PeriodicalId":352958,"journal":{"name":"2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Intelligent Transportation Engineering (ICITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITE.2016.7581325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

GPS/INS integrated Kalman Filter is widely used in vehicle navigation. Conventional Kalman Filter is based on the assumption that noise covariances are fully estimated as Gaussian. However, GPS/INS integrated systems may encounter with inaccurate noise estimation, transient interference, hence noise estimation calibration is required. In this paper, a novel method is proposed, it uses K-Means clustering to automatically identify and discard transient interferences. This method does not require a priori knowledge of transient interferes, and both noise estimation in dynamic update process and measurement update process can be calibrated. Only steady measurement errors are used to calibrate noise estimation. Experiment results show the effectiveness of this method.
GPS/INS组合导航的k均值辅助卡尔曼滤波噪声估计校准
GPS/INS集成卡尔曼滤波器广泛应用于车辆导航。传统的卡尔曼滤波是基于噪声协方差完全估计为高斯的假设。然而,GPS/INS集成系统可能会遇到噪声估计不准确、瞬态干扰等问题,因此需要对噪声估计进行校准。本文提出了一种利用k均值聚类自动识别和丢弃瞬态干扰的新方法。该方法不需要先验的瞬态干扰知识,并且动态更新过程中的噪声估计和测量更新过程中的噪声估计都可以校准。仅使用稳定测量误差来校准噪声估计。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信