Generation of Ternary Bent Functions by Spectral Invariant Operations in the Generalized Reed-Muller Domain

M. Stankovic, C. Moraga, R. Stankovic
{"title":"Generation of Ternary Bent Functions by Spectral Invariant Operations in the Generalized Reed-Muller Domain","authors":"M. Stankovic, C. Moraga, R. Stankovic","doi":"10.1109/ISMVL.2018.00048","DOIUrl":null,"url":null,"abstract":"Spectral invariant operations for ternary functions are defined as operations that preserve the absolute values of Vilenkin-Chrestenson spectral coefficients. Ternary bent functions are characterized as functions with a flat Vilenkin-Chrestenson spectrum, i.e., functions all whose spectral coefficients have the same absolute value. It follows that any function obtained by the application of one or more spectral invariant operations to a bent function will also be a bent function. This property is used in the present study to generate ternary bent functions efficiently in terms of space and time. For a software implementation of spectral invariant operations it is convenient to specify functions to be processed by the generalized Reed- Muller expressions. In this case, each invariant operation over a function f corresponds to adding one or more terms to the generalized Reed-Muller expression for f.","PeriodicalId":434323,"journal":{"name":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","volume":"227 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2018.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Spectral invariant operations for ternary functions are defined as operations that preserve the absolute values of Vilenkin-Chrestenson spectral coefficients. Ternary bent functions are characterized as functions with a flat Vilenkin-Chrestenson spectrum, i.e., functions all whose spectral coefficients have the same absolute value. It follows that any function obtained by the application of one or more spectral invariant operations to a bent function will also be a bent function. This property is used in the present study to generate ternary bent functions efficiently in terms of space and time. For a software implementation of spectral invariant operations it is convenient to specify functions to be processed by the generalized Reed- Muller expressions. In this case, each invariant operation over a function f corresponds to adding one or more terms to the generalized Reed-Muller expression for f.
广义Reed-Muller域上谱不变运算生成三元弯曲函数
三元函数的谱不变运算定义为保持维伦金-克里斯滕森谱系数绝对值的运算。三元弯曲函数的特征是具有平坦的vilenkin - christensen谱的函数,即所有谱系数具有相同绝对值的函数。由此可见,对弯曲函数应用一个或多个谱不变运算得到的任何函数也将是弯曲函数。本研究利用这一性质在空间和时间上有效地生成三元弯曲函数。对于谱不变运算的软件实现,可以方便地指定用广义Reed- Muller表达式处理的函数。在这种情况下,函数f上的每个不变操作对应于向f的广义Reed-Muller表达式中添加一个或多个项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信