Supervised nonnegative matrix factorization with Dual-Itakura-Saito and Kullback-Leibler divergences for music transcription

Hideaki Kagami, M. Yukawa
{"title":"Supervised nonnegative matrix factorization with Dual-Itakura-Saito and Kullback-Leibler divergences for music transcription","authors":"Hideaki Kagami, M. Yukawa","doi":"10.1109/EUSIPCO.2016.7760426","DOIUrl":null,"url":null,"abstract":"In this paper, we present a convex-analytic approach to supervised nonnegative matrix factorization (SNMF) based on the Dual-Itakura-Saito (Dual-IS) and Kullback-Leibler (KL) divergences for music transcription. The Dual-IS and KL divergences define convex fidelity functions, whereas the IS divergence defines a nonconvex one. The SNMF problem is formulated as minimizing the divergence-based fidelity function penalized by the ℓ1 and row-block ℓ1 norms subject to the nonnegativity constraint. Simulation results show that (i) the use of the Dual-IS and KL divergences yields better performance than the squared Euclidean distance and that (ii) the use of the Dual-IS divergence prevents from false alarms efficiently.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"77 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a convex-analytic approach to supervised nonnegative matrix factorization (SNMF) based on the Dual-Itakura-Saito (Dual-IS) and Kullback-Leibler (KL) divergences for music transcription. The Dual-IS and KL divergences define convex fidelity functions, whereas the IS divergence defines a nonconvex one. The SNMF problem is formulated as minimizing the divergence-based fidelity function penalized by the ℓ1 and row-block ℓ1 norms subject to the nonnegativity constraint. Simulation results show that (i) the use of the Dual-IS and KL divergences yields better performance than the squared Euclidean distance and that (ii) the use of the Dual-IS divergence prevents from false alarms efficiently.
具有双itakura - saito和Kullback-Leibler散度的有监督非负矩阵分解用于音乐转录
本文提出了一种基于Dual-Itakura-Saito (Dual-IS)和Kullback-Leibler (KL)散度的有监督非负矩阵分解(SNMF)的凸解析方法。Dual-IS和KL散度定义凸保真函数,而IS散度定义非凸函数。SNMF问题被表述为最小化基于散度的保真度函数,该函数受非负性约束的约束由l1和行块l1范数惩罚。仿真结果表明:(1)使用双is散度和KL散度比使用平方欧氏距离产生更好的性能;(2)使用双is散度可以有效地防止误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信