Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, D. Garlan
{"title":"Modeling observability in adaptive systems to defend against advanced persistent threats","authors":"Cody Kinneer, Ryan Wagner, Fei Fang, Claire Le Goues, D. Garlan","doi":"10.1145/3359986.3361208","DOIUrl":null,"url":null,"abstract":"Advanced persistent threats (APTs) are a particularly troubling challenge for software systems. The adversarial nature of the security domain, and APTs in particular, poses unresolved challenges to the design of self-* systems, such as how to defend against multiple types of attackers with different goals and capabilities. In this interaction, the observability of each side is an important and under-investigated issue in the self-* domain. We propose a model of APT defense that elevates observability as a first-class concern. We evaluate this model by showing how an informed approach that uses observability improves the defender's utility compared to a uniform random strategy, can enable robust planning through sensitivity analysis, and can inform observability-related architectural design decisions.","PeriodicalId":331904,"journal":{"name":"Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3359986.3361208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Advanced persistent threats (APTs) are a particularly troubling challenge for software systems. The adversarial nature of the security domain, and APTs in particular, poses unresolved challenges to the design of self-* systems, such as how to defend against multiple types of attackers with different goals and capabilities. In this interaction, the observability of each side is an important and under-investigated issue in the self-* domain. We propose a model of APT defense that elevates observability as a first-class concern. We evaluate this model by showing how an informed approach that uses observability improves the defender's utility compared to a uniform random strategy, can enable robust planning through sensitivity analysis, and can inform observability-related architectural design decisions.