Fuzzy fractional neutral equation

M. Elomari, I. Bakhadach, S. Melliani, L. S. Chadli
{"title":"Fuzzy fractional neutral equation","authors":"M. Elomari, I. Bakhadach, S. Melliani, L. S. Chadli","doi":"10.1109/ICOA49421.2020.9094488","DOIUrl":null,"url":null,"abstract":"This paper is devoted to a class of nonlinear fuzzy neutral functional differential equations. Specifically, existence and uniqueness of fuzzy solution for the nonlinear fuzzy neutral functional differential equation\\begin{equation*} {}_{gH}D^{\\gamma}[x(t)-gf(t,\\ x_{t})]=Ax(t)+g(t,\\ x_{t}). \\end{equation*} where $A$ is an operator from $E^{1}$ into itself, $\\gamma\\in(0,1)$ and $f$ and $g$ are continuous functions, are established via Banach fixed-point analysis approach and using the fuzzy number whose values are normal, convex upper semicontinuous, and compactly supported interval in $E^{1}$.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to a class of nonlinear fuzzy neutral functional differential equations. Specifically, existence and uniqueness of fuzzy solution for the nonlinear fuzzy neutral functional differential equation\begin{equation*} {}_{gH}D^{\gamma}[x(t)-gf(t,\ x_{t})]=Ax(t)+g(t,\ x_{t}). \end{equation*} where $A$ is an operator from $E^{1}$ into itself, $\gamma\in(0,1)$ and $f$ and $g$ are continuous functions, are established via Banach fixed-point analysis approach and using the fuzzy number whose values are normal, convex upper semicontinuous, and compactly supported interval in $E^{1}$.
模糊分数中立方程
研究了一类非线性模糊中立型泛函微分方程。具体而言,利用$E^{1}$中值为正态、凸上半连续、紧支持区间的模糊数,利用Banach不动点分析方法,建立了非线性模糊中立型泛函微分方程\begin{equation*} {}_{gH}D^{\gamma}[x(t)-gf(t,\ x_{t})]=Ax(t)+g(t,\ x_{t}). \end{equation*}模糊解的存在唯一性,其中$A$为从$E^{1}$到自身的算子,$\gamma\in(0,1)$和$f$、$g$为连续函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信