An accurate exploration of timing and area trade-offs in arithmetic optimization using carry-save adder cells

Youngtaek Kim, Taewhan Kim
{"title":"An accurate exploration of timing and area trade-offs in arithmetic optimization using carry-save adder cells","authors":"Youngtaek Kim, Taewhan Kim","doi":"10.1109/MWSCAS.2000.951655","DOIUrl":null,"url":null,"abstract":"Timing and area of circuits are two of the most important design criteria to be optimized in data path synthesis. Further, carry-save adder (CSA) cell has been proven to be one of the most effective hardware units in optimizing timing and area of the circuits. However, the prior approaches have only been concerned with the optimization of a single operation tree using CSAs, and have not been able to optimize multiple operation trees properly. This paper proposes a practical solution to the problem of an accurate exploration of trade-offs between timing and area in optimizing arithmetic circuit using CSAs. The application of the approach leads to finding a best CSA implementation of circuit in terms of both timing and area.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.951655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Timing and area of circuits are two of the most important design criteria to be optimized in data path synthesis. Further, carry-save adder (CSA) cell has been proven to be one of the most effective hardware units in optimizing timing and area of the circuits. However, the prior approaches have only been concerned with the optimization of a single operation tree using CSAs, and have not been able to optimize multiple operation trees properly. This paper proposes a practical solution to the problem of an accurate exploration of trade-offs between timing and area in optimizing arithmetic circuit using CSAs. The application of the approach leads to finding a best CSA implementation of circuit in terms of both timing and area.
利用免进位加法器单元对算法优化中的时间和面积权衡进行了精确的探索
时序和电路面积是数据路径综合中需要优化的两个最重要的设计准则。此外,节省进位加法器(CSA)单元已被证明是优化电路时序和面积最有效的硬件单元之一。然而,先前的方法只关注使用csa的单个操作树的优化,而不能正确地优化多个操作树。本文提出了一种实用的解决方案,用于精确地探索优化算法电路的时序和面积之间的权衡。该方法的应用可以在时序和面积方面找到最佳的CSA电路实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信