Statistical generalization: theory and applications

B. Wah, Arthur Ieumwananonthachai, Shu Yao, T. Yu
{"title":"Statistical generalization: theory and applications","authors":"B. Wah, Arthur Ieumwananonthachai, Shu Yao, T. Yu","doi":"10.1109/ICCD.1995.528783","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a new approach to generalize heuristic methods (HMs) to new test cases of an application, and conditions under which such generalization is possible. Generalization is difficult when performance values of HMs are characterized by multiple statistical distributions across subsets of test cases of an application. We define a new measure called probability of win and propose three methods to evaluate it: interval analysis, maximum likelihood estimate, and Bayesian analysis. We show experimental results on new HMs found for blind equalization and branch-and-bound search.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"69 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we discuss a new approach to generalize heuristic methods (HMs) to new test cases of an application, and conditions under which such generalization is possible. Generalization is difficult when performance values of HMs are characterized by multiple statistical distributions across subsets of test cases of an application. We define a new measure called probability of win and propose three methods to evaluate it: interval analysis, maximum likelihood estimate, and Bayesian analysis. We show experimental results on new HMs found for blind equalization and branch-and-bound search.
统计泛化:理论与应用
在本文中,我们讨论了一种将启发式方法(HMs)推广到应用程序的新测试用例的新方法,以及这种推广可能的条件。当HMs的性能值被应用程序测试用例子集的多个统计分布所表征时,泛化是困难的。我们定义了一种新的度量方法,称为获胜概率,并提出了三种评估方法:区间分析、最大似然估计和贝叶斯分析。我们给出了盲均衡和分支定界搜索的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信